Linux内核34-读/写信号量

简介: Linux内核34-读/写信号量

每一种技术的出现必然是因为某种需求。正因为人的本性是贪婪的,所以科技的创新才能日新月异。


1 读/写信号量的工作原理


读/写信号量和读/写自旋锁类似,不同的地方是进程在等待读/写信号量的时候处于挂起状态,而在等待读/写自旋锁的时候是处于忙等待,也就是自旋的状态中。

那也就是说,读/写信号量同读/写自旋锁一样,对于读操作,多个内核控制路径可以并发请求一个读写信号量;而对于写操作,每个内核控制路径必须独占访问受保护的资源。因此,对于读/写信号量来说,写操作的时候,既不可以进行读操作,也不可以进行写操作。读/写信号量提高了内核中的并发数量,也同时提高了系统的整体性能。

内核严格按照先进先出(FIFO)的原则处理等待读/写信号量的进程。读进程或者写进程一旦请求信号量失败,就被写到信号量等待队列的队尾。当信号量被释放后,队列中的第一个进程先被执行,因为它先被唤醒。如果唤醒的是一个写进程,那么队列中其它进程继续休眠。如果唤醒的是一个读进程,写进程之前的所有读进程都会被唤醒获得信号量;但是写进程之后的读进程继续休眠。


2 读/写信号量的数据结构


读/写信号量使用数据结构rw_semaphore表示,其成员为:

  • count
    一个32位的整形数,被分割成两个16位的计数器。高16位的计数器以2的补码形式表示非等待写进程和等待内核控制路径的数量,低16位表示非等待读进程和非等待写进程的总数。
  • wait_list
    等待进程的列表。每个元素是一个rwsem_waiter数据结构,包含指向休眠进程描述符的指针和一个标志,这个标志表明进程申请信号量是要读取还是写入。
  • wait_lock
  • 自旋锁,用来保护等待队列和rw_semaphore数据结构。


3 读/写信号量的有关API


初始化函数为 init_rwsem(),用其可以初始化一个rw_semaphore数据结构,将count设为0,wait_lock自旋锁设为未使用,wait_list设为空列表。

down_read()down_write()函数分别用来请求读信号量和写信号量。同理,up_read()up_write()函数分别用来释放读信号量和写信号量。down_read_trylock()down_write_trylock()函数分别与down_read()down_write()函数类似,只是当信号量忙的时候不会阻塞进程。最后,还有一个重要的函数,downgrade_write(),用于写进程使用完写信号量之后,自动将其转换成一个读信号量。这些函数的实现与普通信号量的实现极其类似,所以,在此,我们就不再详细描述其实现过程了。

相关文章
|
8天前
|
Linux
查看linux内核版本
在Linux中查看内核版本可使用`uname -r`、`cat /proc/version`、`lsb_release -a`(若安装LSB)、`/etc/*release`或`/etc/*version`文件、`dmesg | grep Linux`、`cat /sys/class/dmi/id/product_name`、`hostnamectl`、`kernrelease`(如果支持)、`rpm -q kernel`(RPM系统)和`dpkg -l linux-image-*`(Debian系统)。
22 4
|
9天前
|
安全 Linux 数据处理
探索Linux的kmod命令:管理内核模块的利器
`kmod`是Linux下管理内核模块的工具,用于加载、卸载和管理模块及其依赖。使用`kmod load`来加载模块,`kmod remove`卸载模块,`kmod list`查看已加载模块,`kmod alias`显示模块别名。注意需有root权限,且要考虑依赖关系和版本兼容性。最佳实践包括备份、查阅文档和使用额外的管理工具。
|
15天前
|
Linux 编译器 C语言
编译Linux内核:基础、重要性和交叉编译方法
Linux内核作为操作系统的心脏,负责管理计算机的硬件资源,同时也是运行所有其他程序的基础。理解如何编译Linux内核对于系统管理员、开发者乃至高级用户来说都是一项极其宝贵的技能。本文将介绍编译Linux内核的基本知识、编译的重要性、具体步骤以及交叉编译的概念。
25 0
|
21天前
|
运维 NoSQL Ubuntu
深入理解Linux中的"crash"命令:内核崩溃的调试利器
`crash`是Linux内核崩溃调试工具,用于分析内核崩溃转储文件,提供GDB-like的交互式CLI。通过加载`vmcore`文件和内核映像,管理员可以查看系统状态、调用栈、内存布局等。安装`crash`可使用包管理器,如`apt-get`或`yum/dnf`。尽管有学习曲线且依赖转储文件,但`crash`在系统故障排查中极其重要。
|
22天前
|
存储 Linux 数据处理
探索Linux操作系统的内核与文件系统
本文深入探讨了Linux操作系统的核心组件,包括其独特的内核结构和灵活的文件系统。文章首先概述了Linux内核的主要功能和架构,接着详细分析了文件系统的工作原理以及它如何支持数据存储和检索。通过比较不同的文件系统类型,本文旨在为读者提供一个关于如何根据特定需求选择合适文件系统的参考框架。
|
24天前
|
消息中间件 存储 Linux
【Linux】System V 信号量
【Linux】System V 信号量
|
27天前
|
安全 算法 网络协议
探索Linux操作系统的内核管理
【5月更文挑战第31天】本文将深入探讨Linux操作系统的内核管理机制,包括其设计原则、主要组件以及它们如何协同工作以提供高效的系统性能。通过分析Linux内核的关键特性和功能,我们将揭示这一开源操作系统如何在各种计算环境中保持其稳定性和灵活性。
|
28天前
|
机器学习/深度学习 人工智能 负载均衡
深度解析:Linux内核调度策略的演变与优化
【5月更文挑战第30天】 随着计算技术的不断进步,操作系统的性能调优成为了提升计算机系统效率的关键。在众多操作系统中,Linux因其开源和高度可定制性而备受青睐。本文将深入剖析Linux操作系统的内核调度策略,追溯其历史演变过程,并重点探讨近年来为适应多核处理器和实时性要求而产生的调度策略优化。通过分析比较不同的调度算法,如CFS(完全公平调度器)、实时调度类和批处理作业的调度需求,本文旨在为系统管理员和开发者提供对Linux调度机制深层次理解,同时指出未来可能的发展趋势。
|
28天前
|
Linux
探索Linux操作系统的内核模块
本文将深入探讨Linux操作系统的核心组成部分——内核模块,揭示其背后的工作机制和实现方式。我们将从内核模块的定义开始,逐步解析其加载、卸载以及与操作系统其他部分的交互过程,最后探讨内核模块在系统性能优化中的关键作用。
|
29天前
|
缓存 算法 安全
探索Linux内核的虚拟内存管理
【5月更文挑战第29天】 在现代操作系统中,虚拟内存是支持多任务处理和内存保护的关键组件。本文深入分析了Linux操作系统中的虚拟内存管理机制,包括其地址空间布局、分页系统以及内存分配策略。我们将探讨虚拟内存如何允许多个进程独立地访问它们自己的地址空间,同时由操作系统管理物理内存资源。此外,文章还将涉及虚拟内存所带来的性能影响及其优化方法。