大小堆解决【数据流中位数】问题,nice 图解~

简介: 本篇带来利用大小堆解决“获取数据流的中位数”的问题。

image.png

算法系列, 日拱一卒。 更多精彩,请关注我的 算法专栏 (●'◡'●)

本篇带来利用大小堆解决“获取数据流的中位数”的问题。


题目

中位数是有序列表中间的数。如果列表长度是偶数,中位数则是中间两个数的平均值。
例如,
[2,3,4] 的中位数是 3
[2,3] 的中位数是 (2 + 3) / 2 = 2.5
设计一个支持以下两种操作的数据结构:
void addNum(int num) - 从数据流中添加一个整数到数据结构中。
double findMedian() - 返回目前所有元素的中位数。
进阶:
如果数据流中所有整数都在 0 到 100 范围内,你将如何优化你的算法?
如果数据流中 99% 的整数都在 0 到 100 范围内,你将如何优化你的算法?


解题思路:


在数据流中,数据会不断涌入结构中,那么也就面临着需要多次动态调整以获得中位数。 因此实现的数据结构需要既需要快速找到中位数,也需要做到快速调整。

首先能想到就是二叉搜索树,在平衡状态下,树顶必定是中间数,然后再根据长度的奇偶性决定是否取两个数。


此方法效率高,但是手动编写较费时费力。


根据只需获得中间数的想法,可以将数据分为左右两边,一边以最大堆的形式实现,可以快速获得左侧最大数, 另一边则以最小堆的形式实现。其中需要注意的一点就是左右侧数据的长度差不能超过1。 这种实现方式的效率与AVL平衡二叉搜索树的效率相近,但编写更快;


  • AVL 平衡二叉搜索树

平衡二叉查找树:简称平衡二叉树。由前苏联的数学家 Adelse-Velskil 和 Landis 在 1962 年提出的高度平衡的二叉树,根据科学家的英文名也称为 AVL 树。它具有如下几个性质:

  1. 可以是空树。
  2. 假如不是空树,任何一个结点的左子树与右子树都是平衡二叉树,并且高度之差的绝对值不超过 1。


查找、插入和删除在平均和最坏情况下的时间复杂度都是 O(log n);


图解:图解来源-Maple

动态维护一个最大堆和最小堆,最大堆存储一半数据,最小堆存储一半数据,维持最大堆的堆顶比最小堆的堆顶小,并且两个堆的大小最多相差1。

image.png


插入新元素时,具体情况分析如下:

image.png


JS 实现:


const MedianFinder = function () {
    // 默认最大堆
    const defaultCmp = (x, y) => x > y;
    // 交换元素
    const swap = (arr, i, j) => ([arr[i], arr[j]] = [arr[j], arr[i]]);
    // 堆类,默认最大堆
    class Heap {
        constructor(cmp = defaultCmp) {
            this.container = [];
            this.cmp = cmp;
        }
        // 插入
        insert(data) {
            const { container, cmp } = this;
            container.push(data);
            let index = this.size() - 1;
            while (index) {
                let parent = (index - 1) >> 1;
                if (!cmp(container[index], container[parent])) {
                    return;
                }
                swap(container, index, parent);
                index = parent;
            }
        }
        // 弹出堆顶,并返回
        pop() {
            const { container, cmp } = this;
            if (!this.size()) {
                return null;
            }
            swap(container, 0, this.size() - 1);
            const res = container.pop();
            const length = this.size();
            let index = 0,
                exchange = index * 2 + 1;
            while (exchange < length) {
                // // 以最大堆的情况来说:如果有右节点,并且右节点的值大于左节点的值
                let right = index * 2 + 2;
                if (right < length && cmp(container[right], container[exchange])) {
                    exchange = right;
                }
                if (!cmp(container[exchange], container[index])) {
                    break;
                }
                swap(container, exchange, index);
                index = exchange;
                exchange = index * 2 + 1;
            }
            return res;
        }
        // 获取堆大小
        size() {
            return this.container.length;
        }
        // 获取堆顶
        peek() {
            if (this.size()) return this.container[0];
            return null;
        }
    }
    // 最大堆
    this.A = new Heap();
    // 最小堆
    this.B = new Heap((x, y) => x < y);
};
MedianFinder.prototype.addNum = function (num) {
    if (this.A.size() !== this.B.size()) {
        // 当N为奇数,需要向B添加一个元素
        // 先将num插入A,再将A堆顶弹出,插入B
        this.A.insert(num);
        this.B.insert(this.A.pop());
    } else {
        // 当N为偶数,需要向A添加一个元素
        // 先将num插入B,再将B堆顶弹出,插入A
        this.B.insert(num);
        this.A.insert(this.B.pop());
    }
};
MedianFinder.prototype.findMedian = function () {
    // 若总和为偶数,返回两个堆顶的平均数
    // 若总和为奇数,返回A的堆顶
    return this.A.container.length === this.B.container.length
        ? (this.A.peek() + this.B.peek()) / 2
        : this.A.peek();
};


基于图解再看代码实现,就太清晰了~~


OK,以上就是本篇分享~ 撰文不易,点赞鼓励👍👍👍

我是掘金安东尼,公众号同名,日拱一卒、日掘一金,再会~


相关文章
|
8月前
|
算法 测试技术 C++
【动态规划】【前缀和】【数学】2338. 统计理想数组的数目
【动态规划】【前缀和】【数学】2338. 统计理想数组的数目
|
Java
Java线程求和
Java线程求和
75 0
|
算法 C++
剑指offer(C++)-JZ41:数据流中的中位数(算法-排序)
剑指offer(C++)-JZ41:数据流中的中位数(算法-排序)
剑指offer(C++)-JZ41:数据流中的中位数(算法-排序)
|
7月前
|
存储 算法 数据可视化
力扣155题最全解法:如何实现支持常数时间获取最小值的最小栈(附详细图解和复杂度分析)
力扣155题最全解法:如何实现支持常数时间获取最小值的最小栈(附详细图解和复杂度分析)
|
7月前
|
并行计算 Java 测试技术
多线程分段求和
该代码实现了一个多线程计算求和的程序。`MyThread`类中,`sum`方法计算指定范围的和,`divide`方法将任务分块,`sunFirst`使用线程池并行计算各块的和,结果存入`list1`。通过`CountDownLatch`同步线程,所有线程完成后输出总和。测试用例展示了10个线程计算1到10000的和,表明多线程加速效果。注意线程数量与性能的关系,需权衡线程切换成本。
|
7月前
【LeetCode刷题】滑动窗口思想解决:最大连续1的个数 III、将x减到0的最小操作数
【LeetCode刷题】滑动窗口思想解决:最大连续1的个数 III、将x减到0的最小操作数
【数据结构】堆的建立 (时间复杂度计算-堆排序)---超细致
【数据结构】堆的建立 (时间复杂度计算-堆排序)---超细致
455 0
|
存储
剑指offer 42. 数据流中的中位数
剑指offer 42. 数据流中的中位数
46 0
[leetcode] 面试题 17.20. 连续中值 | 对顶堆维护动态中位数
[leetcode] 面试题 17.20. 连续中值 | 对顶堆维护动态中位数
108 0
|
存储 5G 容器
一个很大的文件,存放了10G个整数的乱序数列,如何用程序找出中位数。
一个很大的文件,存放了10G个整数的乱序数列,如何用程序找出中位数。
121 0

热门文章

最新文章

下一篇
开通oss服务