一.题目
二.思路
在动规五部曲中,这个区别主要是体现在递推公式上,其他都和上一篇文章思路是一样的。
所以我们重点讲一讲递推公式。
这里重申一下dp数组的含义:
- dp[i][0] 表示第i天持有股票所得现金。
- dp[i][1] 表示第i天不持有股票所得最多现金
如果第i天持有股票即dp[i][0], 那么可以由两个状态推出来
- 第i-1天就持有股票,那么就保持现状,所得现金就是昨天持有股票的所得现金 即:dp[i - 1][0]
- 第i天买入股票,所得现金就是昨天不持有股票的所得现金减去 今天的股票价格 即:dp[i - 1][1] - prices[i]
在上一题中,因为股票全程只能买卖一次,所以如果买入股票,那么第i天持有股票即dp[i][0]一定就是 -prices[i]。
而本题,因为一只股票可以买卖多次,所以当第i天买入股票的时候,所持有的现金可能有之前买卖过的利润。
那么第i天持有股票即dp[i][0],如果是第i天买入股票,所得现金就是昨天不持有股票的所得现金 减去 今天的股票价格 即:dp[i - 1][1] - prices[i]。
再来看看如果第i天不持有股票即dp[i][1]的情况, 依然可以由两个状态推出来
第i-1天就不持有股票,那么就保持现状,所得现金就是昨天不持有股票的所得现金 即:dp[i - 1][1]
第i天卖出股票,所得现金就是按照今天股票价格卖出后所得现金即:prices[i] + dp[i - 1][0]
注意这里和上一题就是一样的逻辑,卖出股票收获利润(可能是负值)天经地义!
C++代码如下:
(注意代码中的注释,标记了和121.买卖股票的最佳时机唯一不同的地方)
class Solution { public: int maxProfit(vector<int>& prices) { int len = prices.size(); vector<vector<int>> dp(len, vector<int>(2, 0)); dp[0][0] -= prices[0]; dp[0][1] = 0; for (int i = 1; i < len; i++) { dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] - prices[i]); // 注意这里是和121. 买卖股票的最佳时机唯一不同的地方。 dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] + prices[i]); } return dp[len - 1][1]; } };
- 时间复杂度:O(n)
- 空间复杂度:O(n)
dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] - prices[i]);
这正是因为本题的股票可以买卖多次! 所以买入股票的时候,可能会有之前买卖的利润即:dp[i - 1][1],所以dp[i - 1][1] - prices[i]。
想到到这一点,对这两道题理解的就比较深刻了。
Java语言版本:
// 动态规划 class Solution // 实现1:二维数组存储 // 可以将每天持有与否的情况分别用 dp[i][0] 和 dp[i][1] 来进行存储 // 时间复杂度:O(n),空间复杂度:O(n) public int maxProfit(int[] prices) { int n = prices.length; int[][] dp = new int[n][2]; // 创建二维数组存储状态 dp[0][0] = 0; // 初始状态 dp[0][1] = -prices[0]; for (int i = 1; i < n; ++i) { dp[i][0] = Math.max(dp[i - 1][0], dp[i - 1][1] + prices[i]); // 第 i 天,没有股票 dp[i][1] = Math.max(dp[i - 1][1], dp[i - 1][0] - prices[i]); // 第 i 天,持有股票 } return dp[n - 1][0]; // 卖出股票收益高于持有股票收益,因此取[0] } }