数据结构预算法之买股票最好时机&&动态规划(可买卖多次)

简介: 数据结构预算法之买股票最好时机&&动态规划(可买卖多次)

一.题目


1dce7f8a53875a386c02b41b8e7c4d06.pngd0ee06e12c16e4bb7944c68bff1bb417.png


c165dac10a496b330ec9eeaa7f826d1a.png


二.思路


在动规五部曲中,这个区别主要是体现在递推公式上,其他都和上一篇文章思路是一样的


所以我们重点讲一讲递推公式。

这里重申一下dp数组的含义:


  • dp[i][0] 表示第i天持有股票所得现金。
  • dp[i][1] 表示第i天不持有股票所得最多现金

如果第i天持有股票即dp[i][0], 那么可以由两个状态推出来


  • 第i-1天就持有股票,那么就保持现状,所得现金就是昨天持有股票的所得现金 即:dp[i - 1][0]
  • 第i天买入股票,所得现金就是昨天不持有股票的所得现金减去 今天的股票价格 即:dp[i - 1][1] - prices[i]


在上一题中,因为股票全程只能买卖一次,所以如果买入股票,那么第i天持有股票即dp[i][0]一定就是 -prices[i]。


而本题,因为一只股票可以买卖多次,所以当第i天买入股票的时候,所持有的现金可能有之前买卖过的利润。


那么第i天持有股票即dp[i][0],如果是第i天买入股票,所得现金就是昨天不持有股票的所得现金 减去 今天的股票价格 即:dp[i - 1][1] - prices[i]。


再来看看如果第i天不持有股票即dp[i][1]的情况, 依然可以由两个状态推出来


第i-1天就不持有股票,那么就保持现状,所得现金就是昨天不持有股票的所得现金 即:dp[i - 1][1]

第i天卖出股票,所得现金就是按照今天股票价格卖出后所得现金即:prices[i] + dp[i - 1][0]


注意这里和上一题就是一样的逻辑,卖出股票收获利润(可能是负值)天经地义!


C++代码如下:


(注意代码中的注释,标记了和121.买卖股票的最佳时机唯一不同的地方)

class Solution {
public:
    int maxProfit(vector<int>& prices) {
        int len = prices.size();
        vector<vector<int>> dp(len, vector<int>(2, 0));
        dp[0][0] -= prices[0];
        dp[0][1] = 0;
        for (int i = 1; i < len; i++) {
            dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] - prices[i]); // 注意这里是和121. 买卖股票的最佳时机唯一不同的地方。
            dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] + prices[i]);
        }
        return dp[len - 1][1];
    }
};
dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] - prices[i]);


这正是因为本题的股票可以买卖多次! 所以买入股票的时候,可能会有之前买卖的利润即:dp[i - 1][1],所以dp[i - 1][1] - prices[i]。


想到到这一点,对这两道题理解的就比较深刻了。


Java语言版本:

// 动态规划
class Solution 
    // 实现1:二维数组存储
    // 可以将每天持有与否的情况分别用 dp[i][0] 和 dp[i][1] 来进行存储
    // 时间复杂度:O(n),空间复杂度:O(n)
    public int maxProfit(int[] prices) {
        int n = prices.length;
        int[][] dp = new int[n][2];     // 创建二维数组存储状态
        dp[0][0] = 0;                   // 初始状态
        dp[0][1] = -prices[0];
        for (int i = 1; i < n; ++i) {
            dp[i][0] = Math.max(dp[i - 1][0], dp[i - 1][1] + prices[i]);    // 第 i 天,没有股票
            dp[i][1] = Math.max(dp[i - 1][1], dp[i - 1][0] - prices[i]);    // 第 i 天,持有股票
        }
        return dp[n - 1][0];    // 卖出股票收益高于持有股票收益,因此取[0]
    }
}


相关文章
|
7月前
|
存储 缓存 算法
【数据结构与算法】【小白也能学的数据结构与算法】递归 分治 迭代 动态规划 无从下手?一文通!!!
【数据结构与算法】【小白也能学的数据结构与算法】递归 分治 迭代 动态规划 无从下手?一文通!!!
|
6月前
|
存储 算法
数据结构与算法之动态规划--旷工问题
数据结构与算法之动态规划--旷工问题
61 1
|
6月前
|
算法 Java 决策智能
Java数据结构与算法:动态规划之背包问题
Java数据结构与算法:动态规划之背包问题
|
7月前
|
机器学习/深度学习 存储 算法
数据结构与算法 动态规划(启发式搜索、遗传算法、强化学习待完善)
数据结构与算法 动态规划(启发式搜索、遗传算法、强化学习待完善)
105 1
|
7月前
|
算法
数据结构与算法之动态规划
数据结构与算法之动态规划
70 2
利用动态规划转移做数据结构入门题目
利用动态规划转移做数据结构入门题目
|
7月前
|
人工智能 算法 Java
数据结构与算法面试题:给定 n 个非负整数 a1,a2,a3,...,an,每个数代表坐标中的一个点(i, ai),请找出两个点之间的最大距离。(提示:动态规划)
数据结构与算法面试题:给定 n 个非负整数 a1,a2,a3,...,an,每个数代表坐标中的一个点(i, ai),请找出两个点之间的最大距离。(提示:动态规划)
93 1
|
7月前
|
算法 Java C++
数据结构与算法面试题:给定一个字符串 s,找到 s 中最长的回文子串。你可以假设 s 的最大长度为 1000。(提示:使用动态规划或者中心扩散)
数据结构与算法面试题:给定一个字符串 s,找到 s 中最长的回文子串。你可以假设 s 的最大长度为 1000。(提示:使用动态规划或者中心扩散)
85 0
|
7月前
|
存储 算法 Python
Python 数据结构和算法: 解释动态规划的概念,并提供一个实际应用的例子。
Python 数据结构和算法: 解释动态规划的概念,并提供一个实际应用的例子。
50 0
|
算法 大数据 定位技术
大数据开发基础的数据结构和算法的算法思想的动态规划
当今,随着大数据的广泛应用,数据结构和算法成为了大数据开发中不可或缺的一部分。动态规划作为其中的一种算法思想,被广泛使用于求解最优化问题。本篇文章主要介绍大数据开发基础的数据结构和算法的算法思想的动态规划。
104 0

热门文章

最新文章