【万字长文】Flink cdc源码精讲(推荐收藏)(三)

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS PostgreSQL,高可用系列 2核4GB
简介: 【万字长文】Flink cdc源码精讲(推荐收藏)

splitEnumerator :

  • 处理sourceReader的split请求
  • 将split分配给sourceReader
// 继承SplitEnumerator,并重写其方法
public class MySqlSourceEnumerator implements SplitEnumerator<MySqlSplit, PendingSplitsState> {
    private static final long CHECK_EVENT_INTERVAL = 30_000L;
    private final SplitEnumeratorContext<MySqlSplit> context;
    private final MySqlSourceConfig sourceConfig;
    private final MySqlSplitAssigner splitAssigner;
    // using TreeSet to prefer assigning binlog split to task-0 for easier debug
    private final TreeSet<Integer> readersAwaitingSplit;
    private List<List<FinishedSnapshotSplitInfo>> binlogSplitMeta;
    public MySqlSourceEnumerator(
            SplitEnumeratorContext<MySqlSplit> context,
            MySqlSourceConfig sourceConfig,
            MySqlSplitAssigner splitAssigner) {
       // source.createEnumerator传入的context对象
        this.context = context;
        this.sourceConfig = sourceConfig;
        this.splitAssigner = splitAssigner;
        this.readersAwaitingSplit = new TreeSet<>();
    }
    @Override
    public void start() {
        splitAssigner.open(); //调用splitAssigner的open方法,可以具体看看每个splitAssigner的实现
        // 注册一个Callable,定期调用,主要的作用就是当reader出现通信失败或者故障重启之后,检查是否有错过的通知时间,不是终点
        this.context.callAsync(
                this::getRegisteredReader,
                this::syncWithReaders,
                CHECK_EVENT_INTERVAL,
                CHECK_EVENT_INTERVAL);
    }
    // 处理split的请求,当有具体给定子subtask id的reader调用SourceReaderContext.sendSplitRequest()方法时,将调用此方法。
    @Override
    public void handleSplitRequest(int subtaskId, @Nullable String requesterHostname) {
        if (!context.registeredReaders().containsKey(subtaskId)) {
            // reader failed between sending the request and now. skip this request.
            return;
        }
    // 将请求的taskId放入等待列表
        readersAwaitingSplit.add(subtaskId);
       // 对等待列表的subtask进行fen'pei
        assignSplits();
    }
  // 将split添加至splitEnumerator,只有在最后一个成功的checkpoint之后,分配的spilt才会出现此情况,说明需要重新处理.
    @Override
    public void addSplitsBack(List<MySqlSplit> splits, int subtaskId) {
        LOG.debug("MySQL Source Enumerator adds splits back: {}", splits);
        splitAssigner.addSplits(splits);
    }
    // 处理sourceReader的自定义event
    @Override
    public void handleSourceEvent(int subtaskId, SourceEvent sourceEvent) {
       // sourceReader发送给splitEnumerator的SourceEvent通知snapshot的split已经读取完成,binlog的位置是一致的
        if (sourceEvent instanceof FinishedSnapshotSplitsReportEvent) {
            LOG.info(
                    "The enumerator receives finished split offsets {} from subtask {}.",
                    sourceEvent,
                    subtaskId);
            FinishedSnapshotSplitsReportEvent reportEvent =
                    (FinishedSnapshotSplitsReportEvent) sourceEvent;
            Map<String, BinlogOffset> finishedOffsets = reportEvent.getFinishedOffsets();
            // 上面splitAssigner介绍过
            splitAssigner.onFinishedSplits(finishedOffsets);
            // 返回ACK事件返回给redaer的表示已经确认了snapshot
            FinishedSnapshotSplitsAckEvent ackEvent =
                    new FinishedSnapshotSplitsAckEvent(new ArrayList<>(finishedOffsets.keySet()));
            context.sendEventToSourceReader(subtaskId, ackEvent);
        } 
       // sourceReader发送给splitEnumerator的SourceEvent用来拉取binlog元数据,也就是发送BinlogSplitMetaEvent
      else if (sourceEvent instanceof BinlogSplitMetaRequestEvent) {
            LOG.debug(
                    "The enumerator receives request for binlog split meta from subtask {}.",
                    subtaskId);
          // 发送binlog meta
            sendBinlogMeta(subtaskId, (BinlogSplitMetaRequestEvent) sourceEvent);
        }
    }
    @Override
    public PendingSplitsState snapshotState(long checkpointId) {
        return splitAssigner.snapshotState(checkpointId);
    }
    @Override
    public void notifyCheckpointComplete(long checkpointId) {
        splitAssigner.notifyCheckpointComplete(checkpointId);
        // binlog split may be available after checkpoint complete
        assignSplits();
    }
    // ------------------------------------------------------------------------------------------
  // 为等待列表的subtask分配
    private void assignSplits() {
      // treeSet返回的iter是排好序的,即按照subtask id顺序依次处理
        final Iterator<Integer> awaitingReader = readersAwaitingSplit.iterator();
        while (awaitingReader.hasNext()) {
            int nextAwaiting = awaitingReader.next();
            // 如果reader再次请求的split在此期间失败,则将其从等待列表中删除
            if (!context.registeredReaders().containsKey(nextAwaiting)) {
                awaitingReader.remove();
                continue;
            }
            Optional<MySqlSplit> split = splitAssigner.getNext();
            if (split.isPresent()) {
                final MySqlSplit mySqlSplit = split.get();
                // 为subtask分配split
                context.assignSplit(mySqlSplit, nextAwaiting);
                awaitingReader.remove();
                LOG.info("Assign split {} to subtask {}", mySqlSplit, nextAwaiting);
            } else {
                // there is no available splits by now, skip assigning
               // 前面splitAssigner中会分配空值,在这里被过滤掉
                break;
            }
        }
    }
  // 发送给binlog meta event到reader
    private void sendBinlogMeta(int subTask, BinlogSplitMetaRequestEvent requestEvent) {
        // 如果binlog meta ==null 则进行meta的初始化操作
        if (binlogSplitMeta == null) {
            final List<FinishedSnapshotSplitInfo> finishedSnapshotSplitInfos =
                    splitAssigner.getFinishedSplitInfos();
            if (finishedSnapshotSplitInfos.isEmpty()) {
                LOG.error(
                        "The assigner offer empty finished split information, this should not happen");
                throw new FlinkRuntimeException(
                        "The assigner offer empty finished split information, this should not happen");
            }
            binlogSplitMeta =
                    Lists.partition(
                            finishedSnapshotSplitInfos, sourceConfig.getSplitMetaGroupSize());
        }
        final int requestMetaGroupId = requestEvent.getRequestMetaGroupId();
        if (binlogSplitMeta.size() > requestMetaGroupId) {
           // 获取对应的FinishedSnapshotSplitInfo列表,并将其封序列化,生成meta event
            List<FinishedSnapshotSplitInfo> metaToSend = binlogSplitMeta.get(requestMetaGroupId);
            BinlogSplitMetaEvent metadataEvent =
                    new BinlogSplitMetaEvent(
                            requestEvent.getSplitId(),
                            requestMetaGroupId,
                            metaToSend.stream()
                                    .map(FinishedSnapshotSplitInfo::serialize)
                                    .collect(Collectors.toList()));
           // 将生成的meta evnet 发送给reader
            context.sendEventToSourceReader(subTask, metadataEvent);
        } else {
            LOG.error(
                    "Received invalid request meta group id {}, the invalid meta group id range is [0, {}]",
                    requestMetaGroupId,
                    binlogSplitMeta.size() - 1);
        }
    }
}


上面两个类中我们没有看到具体的读数据逻辑,实际上当系统调用addSplit()的时候就开始启动任务了,由于调用链比较长,为了方便观看,我这里直接截图看代码,看看代码是怎么开始进入执行逻辑的,

  • sourceReader中创建的fetcherManager,存入父类成员变量中

640.png

  • 当sourceReader调用addSplits的会调用父类的addSplits方法


640.png

  • 调用我们传入的fetcherManager的addSplits方法

640.png

  • 调用fetcherManager的addSplits方法时,子类没有覆写父类方法,直接进入父类方法,这里直接进入父类的splits方法,如果fetcher没有启动,则创建fetcher(一个runnable对象),然后提交到线程池执行任务


640.png


上面可以看到我们的fetcher已经启动了,那我们就看看fetcher具体做了什么样子的事情(要记住上面传入了一个队列,fetcher中读取的数据会放入队列中),createFetcher时候,实际是创建的SplitFetcher,有flink新source中提供类

/*由于SplitFetcher是一个runnable对象,所以我们直接进入run方法看看做了什么即可
  先介绍一下流程 :
   1. 当构建fetcher的时候在构造方法中,我们传递了一个splitReader,这个是负责真实读取数据的(实际上是mysqlSplitReader)
   2. fetcher构造方法中构建了一个FetcherTask,run之后会开始task的执行,如果还记得的话 我们在startFetcher()之后调用了一个fetcher的addSplit方法,该方法会将splits构建成tasks加入的taskQueue
   3. 里面会有一些空闲,唤醒等不重要的逻辑,我给删除掉了,不重要,不要占用过多时间,因为非cdc内容
*/
   private static final Logger LOG = LoggerFactory.getLogger(SplitFetcher.class);
    private static final SplitFetcherTask WAKEUP_TASK = new DummySplitFetcherTask("WAKEUP_TASK");
    private final int id;
    private final BlockingDeque<SplitFetcherTask> taskQueue;
    // track the assigned splits so we can suspend the reader when there is no splits assigned.
    private final Map<String, SplitT> assignedSplits;
    private final FutureCompletingBlockingQueue<RecordsWithSplitIds<E>> elementsQueue;
    private final SplitReader<E, SplitT> splitReader;
    private final Consumer<Throwable> errorHandler;
    private final Runnable shutdownHook;
    private final AtomicBoolean wakeUp;
    private final AtomicBoolean closed;
    private final FetchTask<E, SplitT> fetchTask;
    private volatile SplitFetcherTask runningTask = null;
    private final Object lock = new Object();
    SplitFetcher(
            int id,
            FutureCompletingBlockingQueue<RecordsWithSplitIds<E>> elementsQueue,
            SplitReader<E, SplitT> splitReader,
            Consumer<Throwable> errorHandler,
            Runnable shutdownHook,
            Consumer<Collection<String>> splitFinishedHook) {
        this.id = id;
       // task队列,包含WAKEUP_TASK(特定情况下唤醒fetcher线程用),以及我们读取任务的task
        this.taskQueue = new LinkedBlockingDeque<>();
       // 读取的数据会放入该队列
        this.elementsQueue = elementsQueue;
        this.assignedSplits = new HashMap<>();
        this.splitReader = splitReader;
        this.errorHandler = errorHandler;
        this.shutdownHook = shutdownHook;
        this.isIdle = true;
        this.wakeUp = new AtomicBoolean(false);
        this.closed = new AtomicBoolean(false);
    // 对传入的splitReader封装到fetcherTask,以便任务启动的时候直接执行任务
        this.fetchTask =
                new FetchTask<>(
                        splitReader,
                        elementsQueue,
                        ids -> {
                            ids.forEach(assignedSplits::remove);
                            splitFinishedHook.accept(ids);
                            LOG.info("Finished reading from splits {}", ids);
                        },
                        id);
    }
    @Override
    public void run() {
        LOG.info("Starting split fetcher {}", id);
        try {
            while (!closed.get()) {
              // 每次循环的距离逻辑
                runOnce();
            }
        } catch (Throwable t) {
            errorHandler.accept(t);
        } finally {
            try {
                splitReader.close();
            } catch (Exception e) {
                errorHandler.accept(e);
            }
            LOG.info("Split fetcher {} exited.", id);
            // This executes after possible errorHandler.accept(t). If these operations bear
            // a happens-before relation, then we can checking side effect of errorHandler.accept(t)
            // to know whether it happened after observing side effect of shutdownHook.run().
            shutdownHook.run();
        }
    }
    /** Package private method to help unit test. */
    void runOnce() {
        try {
            if (shouldRunFetchTask()) {
                runningTask = fetchTask;
            } else {
                runningTask = taskQueue.take();
            }
            LOG.debug("Prepare to run {}", runningTask);
           // 这里运行task,我们下面直接去task中看看具体的操作逻辑即可
            if (!wakeUp.get() && runningTask.run()) {
                LOG.debug("Finished running task {}", runningTask);
                // the task has finished running. Set it to null so it won't be enqueued.
                runningTask = null;
                checkAndSetIdle();
            }
        } catch (Exception e) {
            throw new RuntimeException(
                    String.format(
                            "SplitFetcher thread %d received unexpected exception while polling the records",
                            id),
                    e);
        }
        // If the task is not null that means this task needs to be re-executed. This only
        // happens when the task is the fetching task or the task was interrupted.
        maybeEnqueueTask(runningTask);
        synchronized (wakeUp) {
            // Set the running task to null. It is necessary for the shutdown method to avoid
            // unnecessarily interrupt the running task.
            runningTask = null;
            // Set the wakeUp flag to false.
            wakeUp.set(false);
            LOG.debug("Cleaned wakeup flag.");
        }
    }
    /*  在fetcher创建的时候调用了该方法,或者已经运行之后调用的该方法在上面截图的流程中有代码   */
    public void addSplits(List<SplitT> splitsToAdd) {
        enqueueTask(new AddSplitsTask<>(splitReader, splitsToAdd, assignedSplits));
        wakeUp(true);
    }
  public void enqueueTask(SplitFetcherTask task) {
        synchronized (lock) {
            taskQueue.offer(task);
            isIdle = false;
        }
    }
}
相关实践学习
基于Hologres+Flink搭建GitHub实时数据大屏
通过使用Flink、Hologres构建实时数仓,并通过Hologres对接BI分析工具(以DataV为例),实现海量数据实时分析.
实时计算 Flink 实战课程
如何使用实时计算 Flink 搞定数据处理难题?实时计算 Flink 极客训练营产品、技术专家齐上阵,从开源 Flink功能介绍到实时计算 Flink 优势详解,现场实操,5天即可上手! 欢迎开通实时计算 Flink 版: https://cn.aliyun.com/product/bigdata/sc Flink Forward Asia 介绍: Flink Forward 是由 Apache 官方授权,Apache Flink Community China 支持的会议,通过参会不仅可以了解到 Flink 社区的最新动态和发展计划,还可以了解到国内外一线大厂围绕 Flink 生态的生产实践经验,是 Flink 开发者和使用者不可错过的盛会。 去年经过品牌升级后的 Flink Forward Asia 吸引了超过2000人线下参与,一举成为国内最大的 Apache 顶级项目会议。结合2020年的特殊情况,Flink Forward Asia 2020 将在12月26日以线上峰会的形式与大家见面。
相关文章
|
4月前
|
数据采集 SQL canal
Amoro + Flink CDC 数据融合入湖新体验
本文总结了货拉拉高级大数据开发工程师陈政羽在Flink Forward Asia 2024上的分享,聚焦Flink CDC在货拉拉的应用与优化。内容涵盖CDC应用现状、数据入湖新体验、入湖优化及未来规划。文中详细分析了CDC在多业务场景中的实践,包括数据采集平台化、稳定性建设,以及面临的文件碎片化、Schema演进等挑战。同时介绍了基于Apache Amoro的湖仓融合架构,通过自优化服务解决小文件问题,提升数据新鲜度与读写平衡。未来将深化Paimon与Amoro的结合,打造更高效的入湖生态与自动化优化方案。
221 1
Amoro + Flink CDC 数据融合入湖新体验
|
4月前
|
SQL 关系型数据库 MySQL
Flink CDC 3.4 发布, 优化高频 DDL 处理,支持 Batch 模式,新增 Iceberg 支持
Apache Flink CDC 3.4.0 版本正式发布!经过4个月的开发,此版本强化了对高频表结构变更的支持,新增 batch 执行模式和 Apache Iceberg Sink 连接器,可将数据库数据全增量实时写入 Iceberg 数据湖。51位贡献者完成了259次代码提交,优化了 MySQL、MongoDB 等连接器,并修复多个缺陷。未来 3.5 版本将聚焦脏数据处理、数据限流等能力及 AI 生态对接。欢迎下载体验并提出反馈!
747 1
Flink CDC 3.4 发布, 优化高频 DDL 处理,支持 Batch 模式,新增 Iceberg 支持
|
5月前
|
SQL API Apache
Dinky 和 Flink CDC 在实时整库同步的探索之路
本次分享围绕 Dinky 的整库同步技术演进,从传统数据集成方案的痛点出发,探讨了 Flink CDC Yaml 作业的探索历程。内容分为三个部分:起源、探索、未来。在起源部分,分析了传统数据集成方案中全量与增量割裂、时效性低等问题,引出 Flink CDC 的优势;探索部分详细对比了 Dinky CDC Source 和 Flink CDC Pipeline 的架构与能力,深入讲解了 YAML 作业的细节,如模式演变、数据转换等;未来部分则展望了 Dinky 对 Flink CDC 的支持与优化方向,包括 Pipeline 转换功能、Transform 扩展及实时湖仓治理等。
646 12
Dinky 和 Flink CDC 在实时整库同步的探索之路
|
3月前
|
消息中间件 SQL 关系型数据库
Flink CDC + Kafka 加速业务实时化
Flink CDC 是一种支持流批一体的分布式数据集成工具,通过 YAML 配置实现数据传输过程中的路由与转换操作。它已从单一数据源的 CDC 数据流发展为完整的数据同步解决方案,支持 MySQL、Kafka 等多种数据源和目标端(如 Delta Lake、Iceberg)。其核心功能包括多样化数据输入链路、Schema Evolution、Transform 和 Routing 模块,以及丰富的监控指标。相比传统 SQL 和 DataStream 作业,Flink CDC 提供更灵活的 Schema 变更控制和原始 binlog 同步能力。
|
6月前
|
Oracle 关系型数据库 Java
【YashanDB知识库】Flink CDC实时同步Oracle数据到崖山
本文介绍通过Flink CDC实现Oracle数据实时同步至崖山数据库(YashanDB)的方法,支持全量与增量同步,并涵盖新增、修改和删除的DML操作。内容包括环境准备(如JDK、Flink版本等)、Oracle日志归档启用、用户权限配置、增量日志记录设置、元数据迁移、Flink安装与配置、生成Flink SQL文件、Streampark部署,以及创建和启动实时同步任务的具体步骤。适合需要跨数据库实时同步方案的技术人员参考。
【YashanDB知识库】Flink CDC实时同步Oracle数据到崖山
|
6月前
|
关系型数据库 MySQL 数据库
基于Flink CDC 开发,支持Web-UI的实时KingBase 连接器,三大模式无缝切换,效率翻倍!
TIS 是一款基于Web-UI的开源大数据集成工具,通过与人大金仓Kingbase的深度整合,提供高效、灵活的实时数据集成方案。它支持增量数据监听和实时写入,兼容MySQL、PostgreSQL和Oracle模式,无需编写复杂脚本,操作简单直观,特别适合非专业开发人员使用。TIS率先实现了Kingbase CDC连接器的整合,成为业界首个开箱即用的Kingbase CDC数据同步解决方案,助力企业数字化转型。
990 5
基于Flink CDC 开发,支持Web-UI的实时KingBase 连接器,三大模式无缝切换,效率翻倍!
|
6月前
|
存储 SQL Java
Flink CDC + Hologres高性能数据同步优化实践
本文整理自阿里云高级技术专家胡一博老师在Flink Forward Asia 2024数据集成(二)专场的分享,主要内容包括:1. Hologres介绍:实时数据仓库,支持毫秒级写入和高QPS查询;2. 写入优化:通过改进缓冲队列、连接池和COPY模式提高吞吐量和降低延迟;3. 消费优化:优化离线场景和分区表的消费逻辑,提升性能和资源利用率;4. 未来展望:进一步简化用户操作,支持更多DDL操作及全增量消费。Hologres 3.0全新升级为一体化实时湖仓平台,提供多项新功能并降低使用成本。
491 1
Flink CDC + Hologres高性能数据同步优化实践
|
6月前
|
分布式计算 关系型数据库 MySQL
Flink CDC 3.3.0 发布公告
Flink CDC 3.3.0 发布公告
244 14
|
6月前
|
SQL 弹性计算 DataWorks
Flink CDC 在阿里云 DataWorks 数据集成入湖场景的应用实践
Flink CDC 在阿里云 DataWorks 数据集成入湖场景的应用实践
241 6
|
6月前
|
SQL 人工智能 关系型数据库
Flink CDC YAML:面向数据集成的 API 设计
Flink CDC YAML:面向数据集成的 API 设计
172 5