【万字长文】Flink cdc源码精讲(推荐收藏)(二)

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
实时计算 Flink 版,1000CU*H 3个月
云数据库 RDS MySQL,高可用系列 2核4GB
简介: 【万字长文】Flink cdc源码精讲(推荐收藏)

三.mysql-cdc源码-新Source接口的实现


1.11版本之后flink提供了新的source接口,可以提前预习一波https://issues.apache.org/jira/browse/FLINK-10740

简单介绍一下

SourceReader  : 对split的的数据进行读取操作,比如: 读取一个分区,一个块等,当然不只局限与一个分区,根据自己的实现来

SplitEnumerator : 负责对数据源进行切分或者发现分区等,比如: 发现kafka的分区,对文件划分块等

上述的比较简单,实际上比这复杂一点,所以在新的source接口实现一个source是比较难的事情,不过熟悉之后都一样


提前说明 :

一个split我们可以认为是一个切片,mysql-cdc中, 假想情况下 :  一张的一部分中, 比如 开始主键 1 到 结束主键 10 ,那么该split就表示这些数据,在具体读取数据的时候是有readTask来去读,那么他就会通过split标记的点位来进行数据的读取,当然一个readTask不止会执行一个split;

snapshot表示的是读取数据库的历史全量数据

binlog 表示当我们snapshot阶段结束后开始binlog阶段,即我们开始读取的binlog数据了

先执行snapshot阶段,后执行binlog阶段



代码的生成和旧版是相同的,只不过是内部执行的逻辑存在变化,新的source接口实现的cdc代码比较复杂,涉及的内容比较多,可能比较晕,后面自己可以根据源码debug走一走

由于代码过多,主要讲解重点的内容,不重要的跳过了

// 实现了两个接口 source,和 resultTypeQueryable(比较简单就一个获取结果类型信息的接口) , 主要代码还是在source接口的实现
// T 为输出类型,MySqlSplit是mysql的分割器,PendingSplitsState表示Enumerator的状态对象
public class MySqlSource<T>
       implements Source<T, MySqlSplit, PendingSplitsState>, ResultTypeQueryable<T> {
   private final MySqlSourceConfigFactory configFactory;
   private final DebeziumDeserializationSchema<T> deserializationSchema;
   /* 通过构造者模式构建source所需要的参数,简单说明一下,里面的参数,通过MySqlSourceConfigFactory添加参数,在build方法中,将factory作为参数构建出MySqlSource
    -------------------------------------讲解一下对应关系------------------------------------------------
  MySqlSourceConfigFactory 可以根据不同的subtask创建对应的MySqlSourceConfig
  MySqlSourceConfig 可以构建 MySqlConnectorConfig
  MySqlConnection 通过 DebeziumUtil.createMySqlConnection(mySqlSourceConfig.getDbzConfiguration())方法构建
     上面的一个config比较混乱,名字也比较不容易理解,后面用到的时候会简单提一下,这里主要是有一个印象,不要被一些配置搞混
   */
   public static <T> MySqlSourceBuilder<T> builder() {
       return new MySqlSourceBuilder<>();
  }
 // 由MySqlSourceBuilder.build方法创建
   MySqlSource(
           MySqlSourceConfigFactory configFactory,
           DebeziumDeserializationSchema<T> deserializationSchema // 与老版source的deserialization一样
  ) {
       this.configFactory = configFactory;
       this.deserializationSchema = deserializationSchema;
  }
   @Override  // 流批一体的source,表示有界性,新source接口的特性
   public Boundedness getBoundedness() {return Boundedness.CONTINUOUS_UNBOUNDED; }
  /*构建sourceReader */
   @Override
   public SourceReader<T, MySqlSplit> createReader(SourceReaderContext readerContext)
           throws Exception {
    // 前面提到了,根据subtask索引创建对应的config
       MySqlSourceConfig sourceConfig =
               configFactory.createConfig(readerContext.getIndexOfSubtask());
       // 一个阻塞队列,多线程交互用的,不必深入
       FutureCompletingBlockingQueue<RecordsWithSplitIds<SourceRecord>> elementsQueue =
               new FutureCompletingBlockingQueue<>();
    // metric相关
       final MySqlSourceReaderMetrics sourceReaderMetrics =
               new MySqlSourceReaderMetrics(readerContext.metricGroup());
       sourceReaderMetrics.registerMetrics();
    // 通过supplier函数构建一个SplitReader,解耦的作用,主要看里面的MySqlSplitReader实现即可
       Supplier<MySqlSplitReader> splitReaderSupplier =
        // 拿到每个reader的config和对应的subtask index
              () -> new MySqlSplitReader(sourceConfig, readerContext.getIndexOfSubtask());
    // 构建了一个具体的sourceReader
       return new MySqlSourceReader<>(
               elementsQueue,
               splitReaderSupplier,
               new MySqlRecordEmitter<>(
                       deserializationSchema,
                       sourceReaderMetrics,
                       sourceConfig.isIncludeSchemaChanges()),
               readerContext.getConfiguration(),
               readerContext,
               sourceConfig);
  }
   @Override
   public SplitEnumerator<MySqlSplit, PendingSplitsState> createEnumerator(
           SplitEnumeratorContext<MySqlSplit> enumContext) {
    // 因为只会生成一次所以生成一个sourceConfig即可
       MySqlSourceConfig sourceConfig = configFactory.createConfig(0);
// 检验mysql
       final MySqlValidator validator = new MySqlValidator(sourceConfig);
       validator.validate();
       final MySqlSplitAssigner splitAssigner;
    // 判断开始条件如果是initial则先读取mysql table的数据(代码中叫做snapshot),然后再继续读取binlog的数据,如果不是initial状态,则直接从binlog开始读取
       if (sourceConfig.getStartupOptions().startupMode == StartupMode.INITIAL) {
           try (JdbcConnection jdbc = openJdbcConnection(sourceConfig)) {
               final List<TableId> remainingTables = discoverCapturedTables(jdbc, sourceConfig);
               boolean isTableIdCaseSensitive = DebeziumUtils.isTableIdCaseSensitive(jdbc);
               splitAssigner =
                // 里面包含 snapshot和binlog的split逻辑
                       new MySqlHybridSplitAssigner(
                               sourceConfig,
                               enumContext.currentParallelism(),
                               remainingTables,
                               isTableIdCaseSensitive);
          } catch (Exception e) {
               throw new FlinkRuntimeException(
                       "Failed to discover captured tables for enumerator", e);
          }
      } else {
        // 之有binlog的split逻辑
           splitAssigner = new MySqlBinlogSplitAssigner(sourceConfig);
      }
// 创建对应发的SplitEnumerator,用于构建split给reader读取
       return new MySqlSourceEnumerator(enumContext, sourceConfig, splitAssigner);
  }
// 恢复SplitEnumerato,比如任务故障重启,会根据不同的checkpoint恢复SplitEnumerator,用于继续之前未完成的读取操作
   @Override
   public SplitEnumerator<MySqlSplit, PendingSplitsState> restoreEnumerator(
           SplitEnumeratorContext<MySqlSplit> enumContext, PendingSplitsState checkpoint) {
       MySqlSourceConfig sourceConfig = configFactory.createConfig(0);
       final MySqlSplitAssigner splitAssigner;
       if (checkpoint instanceof HybridPendingSplitsState) {
           splitAssigner =
                   new MySqlHybridSplitAssigner(
                           sourceConfig,
                           enumContext.currentParallelism(),
                          (HybridPendingSplitsState) checkpoint);
      } else if (checkpoint instanceof BinlogPendingSplitsState) {
           splitAssigner =
                   new MySqlBinlogSplitAssigner( sourceConfig, (BinlogPendingSplitsState) checkpoint);
      } else {
           throw new UnsupportedOperationException( "Unsupported restored PendingSplitsState: " + checkpoint);
      }
       return new MySqlSourceEnumerator(enumContext, sourceConfig, splitAssigner);
  }
 // -----------------容错相关,不是重点-----------------
   @Override
   public SimpleVersionedSerializer<MySqlSplit> getSplitSerializer() { return MySqlSplitSerializer.INSTANCE; }
   @Override
   public SimpleVersionedSerializer<PendingSplitsState> getEnumeratorCheckpointSerializer() { return new PendingSplitsStateSerializer(getSplitSerializer());}
// 返回值类型的提取
   @Override
   public TypeInformation<T> getProducedType() {return deserializationSchema.getProducedType();}
}

上面的代码中我们可以看到source的实现,主要是构建sourceReader和splitEnumerator,以及容错内容,相关的处理逻辑也封装在相应的对象中,下面我们对其内部逐步剖析

/*在看其他内容之前,我们可以看看如何对mysql进行split操作,在snapshot是通过主键来split的,binlog的只从当前offset位置开始消费,
这里是混合的一个split,另外还存在binlog和snapshot的splitAssigner,不过我们根据主要看看大致逻辑,具体到某一直可以自己阅读理解,
解释一下 : 先读取mysql历史数据即snapshot阶段,然后再进行当前mysql-binlog的位置开始消费,所以这个混合的意义就是先读取全量数据,然后从最新的binlog开始读取,完成cdc读取数据的过程*/
public class MySqlHybridSplitAssigner implements MySqlSplitAssigner {
    private final int splitMetaGroupSize;
    private boolean isBinlogSplitAssigned;
    private final MySqlSnapshotSplitAssigner snapshotSplitAssigner;
    public MySqlHybridSplitAssigner(
            MySqlSourceConfig sourceConfig,
            int currentParallelism,
            List<TableId> remainingTables,
            boolean isTableIdCaseSensitive) {
        this(
             // 创建snapshot split
                new MySqlSnapshotSplitAssigner(
                        sourceConfig, currentParallelism, remainingTables, isTableIdCaseSensitive),
                false,
                sourceConfig.getSplitMetaGroupSize());
    }
    public MySqlHybridSplitAssigner(
            MySqlSourceConfig sourceConfig,
            int currentParallelism,
            HybridPendingSplitsState checkpoint) {
        this(
                new MySqlSnapshotSplitAssigner(
                        sourceConfig, currentParallelism, checkpoint.getSnapshotPendingSplits()),
                checkpoint.isBinlogSplitAssigned(),
                sourceConfig.getSplitMetaGroupSize());
    }
    private MySqlHybridSplitAssigner(
            MySqlSnapshotSplitAssigner snapshotSplitAssigner,
            boolean isBinlogSplitAssigned,
            int splitMetaGroupSize) {
        this.snapshotSplitAssigner = snapshotSplitAssigner;
        this.isBinlogSplitAssigned = isBinlogSplitAssigned;
        this.splitMetaGroupSize = splitMetaGroupSize;
    }
    @Override
    public void open() {
        snapshotSplitAssigner.open();
    }
  // 主要返回下一个split,没有则返回一个空, optional可以jdk8的新特性,用于解决空指针的一个类
    @Override
    public Optional<MySqlSplit> getNext() {
      // 下面的方法可以见名知意,自行理解即可
        if (snapshotSplitAssigner.noMoreSplits()) {
            if (isBinlogSplitAssigned) {
                return Optional.empty();
            } else if (snapshotSplitAssigner.isFinished()) { // 当snapshot完成后,开始binlog的split流程
                // we need to wait snapshot-assigner to be finished before
                // assigning the binlog split. Otherwise, records emitted from binlog split
                // might be out-of-order in terms of same primary key with snapshot splits.
                isBinlogSplitAssigned = true;
                return Optional.of(createBinlogSplit());
            } else {
                // binlog split is not ready by now
                return Optional.empty();
            }
        } else {
            // snapshot assigner still have remaining splits, assign split from it
            return snapshotSplitAssigner.getNext();
        }
    }
   // splitAssigner是否在等待已完成split回调,即onFinishedSplits
    @Override
    public boolean waitingForFinishedSplits() {
        return snapshotSplitAssigner.waitingForFinishedSplits();
    }
  // 获取已完成的split并且包含他的元数据,可以根据已经完成snapshot(snapshot的某一个split)生成对应binlog的split
    @Override
    public List<FinishedSnapshotSplitInfo> getFinishedSplitInfos() {
        return snapshotSplitAssigner.getFinishedSplitInfos();
    }
  // 使用已完成的binlog偏移量来处理已完成的split,用于确定何时生成binlog split以及生成什么binlog split,就是回调
    @Override
    public void onFinishedSplits(Map<String, BinlogOffset> splitFinishedOffsets) {
        snapshotSplitAssigner.onFinishedSplits(splitFinishedOffsets);
    }
   // 向此splitAssigner添加一组spilt,当某些split处理失败,则需要重新添加分割时调用此方法
    @Override
    public void addSplits(Collection<MySqlSplit> splits) {
        List<MySqlSplit> snapshotSplits = new ArrayList<>();
        for (MySqlSplit split : splits) {
            if (split.isSnapshotSplit()) {
                snapshotSplits.add(split);
            } else {
                // we don't store the split, but will re-create binlog split later
                isBinlogSplitAssigned = false;
            }
        }
        snapshotSplitAssigner.addSplits(snapshotSplits);
    }
 // ----------------------------checkpoint 容错相关----------------------------------------
    @Override
    public PendingSplitsState snapshotState(long checkpointId) {
        return new HybridPendingSplitsState(
                snapshotSplitAssigner.snapshotState(checkpointId), isBinlogSplitAssigned);
    }
    @Override
    public void notifyCheckpointComplete(long checkpointId) {
        snapshotSplitAssigner.notifyCheckpointComplete(checkpointId);
    }
    @Override
    public void close() {
        snapshotSplitAssigner.close();
    }
    // ------------------------------------binlog split部分-------------------------------------------
  // 构建biglog split, 就是根据已经完成snapshot split来构建binlog split的一个过程,split代码比较简单可以自行阅读
   // 简单介绍一下 就是描述binlog的split,snapshot的split相关内容,比如snapshot,会按照主键去做split,已经table的schemas相关信息
    private MySqlBinlogSplit createBinlogSplit() {
        final List<MySqlSnapshotSplit> assignedSnapshotSplit =
                snapshotSplitAssigner.getAssignedSplits().values().stream()
                        .sorted(Comparator.comparing(MySqlSplit::splitId))
                        .collect(Collectors.toList());
        Map<String, BinlogOffset> splitFinishedOffsets =
                snapshotSplitAssigner.getSplitFinishedOffsets();
        final List<FinishedSnapshotSplitInfo> finishedSnapshotSplitInfos = new ArrayList<>();
        BinlogOffset minBinlogOffset = null;
        for (MySqlSnapshotSplit split : assignedSnapshotSplit) {
            // find the min binlog offset
            BinlogOffset binlogOffset = splitFinishedOffsets.get(split.splitId());
            if (minBinlogOffset == null || binlogOffset.isBefore(minBinlogOffset)) {
                minBinlogOffset = binlogOffset;
            }
            finishedSnapshotSplitInfos.add(
                    new FinishedSnapshotSplitInfo(
                            split.getTableId(),
                            split.splitId(),
                            split.getSplitStart(),
                            split.getSplitEnd(),
                            binlogOffset));
        }
        boolean divideMetaToGroups = finishedSnapshotSplitInfos.size() > splitMetaGroupSize;
        return new MySqlBinlogSplit(
                BINLOG_SPLIT_ID,
                minBinlogOffset == null ? BinlogOffset.INITIAL_OFFSET : minBinlogOffset,
                BinlogOffset.NO_STOPPING_OFFSET,
                divideMetaToGroups ? new ArrayList<>() : finishedSnapshotSplitInfos,
                new HashMap<>(),
                finishedSnapshotSplitInfos.size());
    }
}

现在我们开始介绍sourceReader和SplitEnumerator

sourceReader :

/* SingleThreadMultiplexSourceReaderBase */
public class MySqlSourceReader<T>
     extends SingleThreadMultiplexSourceReaderBase<SourceRecord, T, MySqlSplit, MySqlSplitState> {
 private static final Logger LOG = LoggerFactory.getLogger(MySqlSourceReader.class);
 private final MySqlSourceConfig sourceConfig;
 private final Map<String, MySqlSnapshotSplit> finishedUnackedSplits;
 private final Map<String, MySqlBinlogSplit> uncompletedBinlogSplits;
 private final int subtaskId;
 public MySqlSourceReader(
         FutureCompletingBlockingQueue<RecordsWithSplitIds<SourceRecord>> elementQueue,
         Supplier<MySqlSplitReader> splitReaderSupplier,
         RecordEmitter<SourceRecord, T, MySqlSplitState> recordEmitter,
         Configuration config,
         SourceReaderContext context,
         MySqlSourceConfig sourceConfig) {
     super(
             elementQueue,
          // 一个单线程的fetcher管理器,做一些读取操作
          // 简单描述一下流程 
          // SingleThreadFetcherManager.createSplitFetcher 构建一个SplitFetcher(实现了Runnable),在SplitFetcher中会构建一个fetcherTask,SplitFetcher.run方法中,循环调用this.runOnce(),this.runOnce()会持续调用fetcherTask.run()读取数据,run()会调用MySqlSplitReader.fetch方法,返回reader读取的数据,并将数据放入到elementQueue中,只要涉及都多线程的代码,都比较晦涩难懂
             new SingleThreadFetcherManager<>(elementQueue, splitReaderSupplier::get),
             recordEmitter,
             config,
             context);
     this.sourceConfig = sourceConfig;
     this.finishedUnackedSplits = new HashMap<>();
     this.uncompletedBinlogSplits = new HashMap<>();
     this.subtaskId = context.getIndexOfSubtask();
 }
  // 启动reader
 @Override
 public void start() {
     if (getNumberOfCurrentlyAssignedSplits() == 0) {
        // 发送split的请求到splitEnumerator,会调用到SplitEnumerator.handleSplitRequest(int, String)方法,会带这并行的reader的subtask id 和hostname
         context.sendSplitRequest();
     }
 }
  // 当reader分配到新的split的时候,会初始化一个split的state
 @Override
 protected MySqlSplitState initializedState(MySqlSplit split) {
     if (split.isSnapshotSplit()) {
         return new MySqlSnapshotSplitState(split.asSnapshotSplit());
     } else {
         return new MySqlBinlogSplitState(split.asBinlogSplit());
     }
 }
 @Override // 容错相关, skip
 public List<MySqlSplit> snapshotState(long checkpointId) {
     // unfinished splits
     List<MySqlSplit> stateSplits = super.snapshotState(checkpointId);
     // add finished snapshot splits that didn't receive ack yet
     stateSplits.addAll(finishedUnackedSplits.values());
     // add binlog splits who are uncompleted
     stateSplits.addAll(uncompletedBinlogSplits.values());
     return stateSplits;
 }
  // 清理处理已完成的split状态,非重点
 @Override
 protected void onSplitFinished(Map<String, MySqlSplitState> finishedSplitIds) {
     for (MySqlSplitState mySqlSplitState : finishedSplitIds.values()) {
         MySqlSplit mySqlSplit = mySqlSplitState.toMySqlSplit();
         checkState(
                 mySqlSplit.isSnapshotSplit(),
                 String.format(
                         "Only snapshot split could finish, but the actual split is binlog split %s",
                         mySqlSplit));
         finishedUnackedSplits.put(mySqlSplit.splitId(), mySqlSplit.asSnapshotSplit());
     }
     reportFinishedSnapshotSplitsIfNeed();
     context.sendSplitRequest();
 }
  /*添加此reader要read的split列表,当splitEnumerator通过splitEnumeratorContext分配一个splut时,将调用此方法
即调用 context.assignSplit(SourceSplit, int) 或者 context.assignSplits(SplitsAssignment).
 */
 @Override
 public void addSplits(List<MySqlSplit> splits) {
     List<MySqlSplit> unfinishedSplits = new ArrayList<>();
     for (MySqlSplit split : splits) {
       // 判断是否是snapshot还是binlog split
         if (split.isSnapshotSplit()) {
            // 如果split已经read完成放入完成集合,否则放入未完成的集合中
             MySqlSnapshotSplit snapshotSplit = split.asSnapshotSplit();
             if (snapshotSplit.isSnapshotReadFinished()) {
                 finishedUnackedSplits.put(snapshotSplit.splitId(), snapshotSplit);
             } else {
                 unfinishedSplits.add(split);
             }
         } else {
             if (!split.asBinlogSplit().isCompletedSplit()) {
                //如果binlog split未完成则加入未完成的列表中,并想spluitEnumerator发送请求binlog split meta的事件
                 uncompletedBinlogSplits.put(split.splitId(), split.asBinlogSplit());
                 requestBinlogSplitMetaIfNeeded(split.asBinlogSplit());
             } else {
                // 未完成的split集合删除该split ,未完成的集合表示没有split meta信息
                 uncompletedBinlogSplits.remove(split.splitId());
                // 创建binlog split, 带有table schema信息
                 MySqlBinlogSplit mySqlBinlogSplit =
                         discoverTableSchemasForBinlogSplit(split.asBinlogSplit());
                // 添加到未完成的splits,后续会进行read操作
                 unfinishedSplits.add(mySqlBinlogSplit);
             }
         }
     }
     // notify split enumerator again about the finished unacked snapshot splits
     reportFinishedSnapshotSplitsIfNeed();
     // add all un-finished splits (including binlog split) to SourceReaderBase
     // TODO 当调用spuer.addSplits的时候,会启动fetcherManager,开始读取数据的操作
     super.addSplits(unfinishedSplits);
 }
 private MySqlBinlogSplit discoverTableSchemasForBinlogSplit(MySqlBinlogSplit split) {
     final String splitId = split.splitId();
   // 如果tableSchema不存在则填充,如果已经存在,则直接返回split即可
     if (split.getTableSchemas().isEmpty()) {
         try (MySqlConnection jdbc =
              // 静态方法,构建一个mysqlConnection,可以认为就是一个jdbc连接 ,不必深入
                 DebeziumUtils.createMySqlConnection(sourceConfig.getDbzConfiguration())) {
             Map<TableId, TableChanges.TableChange> tableSchemas =
                // 静态方法,根据我们sourceBuilder构建的时候给定的database和tablelist来构建对应的tableId和TableChange,然后我们在面read的时候需要, 不必深入工具类
              TableDiscoveryUtils.discoverCapturedTableSchemas(sourceConfig, jdbc);
             LOG.info("The table schema discovery for binlog split {} success", splitId);
            // 静态方法,构建一个带有tableSchema的MysqlBinlogSpilt,不必深入
             return MySqlBinlogSplit.fillTableSchemas(split, tableSchemas);
         } catch (SQLException e) {
             LOG.error("Failed to obtains table schemas due to {}", e.getMessage());
             throw new FlinkRuntimeException(e);
         }
     } else {
         LOG.warn("The binlog split {} has table schemas yet, skip the table schema discovery",split);
         return split;
     }
 }
// 处理source自定义事件,接收来自splitEumumerator,与splitEumumerator类似
 @Override
 public void handleSourceEvents(SourceEvent sourceEvent) {
     if (sourceEvent instanceof FinishedSnapshotSplitsAckEvent) {
         FinishedSnapshotSplitsAckEvent ackEvent = (FinishedSnapshotSplitsAckEvent) sourceEvent;
         LOG.debug(
                 "The subtask {} receives ack event for {} from enumerator.",
                 subtaskId,
                 ackEvent.getFinishedSplits());
         for (String splitId : ackEvent.getFinishedSplits()) {
             this.finishedUnackedSplits.remove(splitId);
         }
     } else if (sourceEvent instanceof FinishedSnapshotSplitsRequestEvent) {
         // report finished snapshot splits
         LOG.debug(
                 "The subtask {} receives request to report finished snapshot splits.",
                 subtaskId);
         reportFinishedSnapshotSplitsIfNeed();
     } else if (sourceEvent instanceof BinlogSplitMetaEvent) {
         LOG.debug(
                 "The subtask {} receives binlog meta with group id {}.",
                 subtaskId,
                 ((BinlogSplitMetaEvent) sourceEvent).getMetaGroupId());
         fillMetaDataForBinlogSplit((BinlogSplitMetaEvent) sourceEvent);
     } else {
         super.handleSourceEvents(sourceEvent);
     }
 }
   // 发送请求binlogSplit meta的事件
 private void requestBinlogSplitMetaIfNeeded(MySqlBinlogSplit binlogSplit) {
     final String splitId = binlogSplit.splitId();
     if (!binlogSplit.isCompletedSplit()) {
         final int nextMetaGroupId =
                 getNextMetaGroupId(
                         binlogSplit.getFinishedSnapshotSplitInfos().size(),
                         sourceConfig.getSplitMetaGroupSize());
         BinlogSplitMetaRequestEvent splitMetaRequestEvent =
                 new BinlogSplitMetaRequestEvent(splitId, nextMetaGroupId);
         context.sendSourceEventToCoordinator(splitMetaRequestEvent);
     } else {
         LOG.info("The meta of binlog split {} has been collected success", splitId);
         this.addSplits(Arrays.asList(binlogSplit));
     }
 }
  // 我们发送了请求meta的event后,会收到binlog split meta,我们需要填充至binlogSplit中
 private void fillMetaDataForBinlogSplit(BinlogSplitMetaEvent metadataEvent) {
     MySqlBinlogSplit binlogSplit = uncompletedBinlogSplits.get(metadataEvent.getSplitId());
     if (binlogSplit != null) {
         final int receivedMetaGroupId = metadataEvent.getMetaGroupId();
         final int expectedMetaGroupId =
                 getNextMetaGroupId(
                         binlogSplit.getFinishedSnapshotSplitInfos().size(),
                         sourceConfig.getSplitMetaGroupSize());
         if (receivedMetaGroupId == expectedMetaGroupId) {
             List<FinishedSnapshotSplitInfo> metaDataGroup =
                     metadataEvent.getMetaGroup().stream()
                             .map(FinishedSnapshotSplitInfo::deserialize)
                             .collect(Collectors.toList());
             uncompletedBinlogSplits.put(
                     binlogSplit.splitId(),
                     MySqlBinlogSplit.appendFinishedSplitInfos(binlogSplit, metaDataGroup));
             LOG.info("Fill meta data of group {} to binlog split", metaDataGroup.size());
         } else {
             LOG.warn("Received out of oder binlog meta event for split {}, the received meta group id is {}, but expected is {}, ignore it",metadataEvent.getSplitId(), receivedMetaGroupId,expectedMetaGroupId);
         }
       // 继续发送请求meta event
         requestBinlogSplitMetaIfNeeded(binlogSplit);
     } else {
         LOG.warn( "Received binlog meta event for split {}, but the uncompleted split map does not contain it", metadataEvent.getSplitId());
     }
 }
   // state变成不可变的state
 @Override
 protected MySqlSplit toSplitType(String splitId, MySqlSplitState splitState) { return splitState.toMySqlSplit(); }
}
相关实践学习
基于Hologres+Flink搭建GitHub实时数据大屏
通过使用Flink、Hologres构建实时数仓,并通过Hologres对接BI分析工具(以DataV为例),实现海量数据实时分析.
实时计算 Flink 实战课程
如何使用实时计算 Flink 搞定数据处理难题?实时计算 Flink 极客训练营产品、技术专家齐上阵,从开源 Flink功能介绍到实时计算 Flink 优势详解,现场实操,5天即可上手! 欢迎开通实时计算 Flink 版: https://cn.aliyun.com/product/bigdata/sc Flink Forward Asia 介绍: Flink Forward 是由 Apache 官方授权,Apache Flink Community China 支持的会议,通过参会不仅可以了解到 Flink 社区的最新动态和发展计划,还可以了解到国内外一线大厂围绕 Flink 生态的生产实践经验,是 Flink 开发者和使用者不可错过的盛会。 去年经过品牌升级后的 Flink Forward Asia 吸引了超过2000人线下参与,一举成为国内最大的 Apache 顶级项目会议。结合2020年的特殊情况,Flink Forward Asia 2020 将在12月26日以线上峰会的形式与大家见面。
相关文章
|
3月前
|
SQL 关系型数据库 Apache
从 Flink 到 Doris 的实时数据写入实践 —— 基于 Flink CDC 构建更实时高效的数据集成链路
本文将深入解析 Flink-Doris-Connector 三大典型场景中的设计与实现,并结合 Flink CDC 详细介绍了整库同步的解决方案,助力构建更加高效、稳定的实时数据处理体系。
1697 0
从 Flink 到 Doris 的实时数据写入实践 —— 基于 Flink CDC 构建更实时高效的数据集成链路
|
6月前
|
数据采集 SQL canal
Amoro + Flink CDC 数据融合入湖新体验
本文总结了货拉拉高级大数据开发工程师陈政羽在Flink Forward Asia 2024上的分享,聚焦Flink CDC在货拉拉的应用与优化。内容涵盖CDC应用现状、数据入湖新体验、入湖优化及未来规划。文中详细分析了CDC在多业务场景中的实践,包括数据采集平台化、稳定性建设,以及面临的文件碎片化、Schema演进等挑战。同时介绍了基于Apache Amoro的湖仓融合架构,通过自优化服务解决小文件问题,提升数据新鲜度与读写平衡。未来将深化Paimon与Amoro的结合,打造更高效的入湖生态与自动化优化方案。
376 1
Amoro + Flink CDC 数据融合入湖新体验
|
6月前
|
SQL 关系型数据库 MySQL
Flink CDC 3.4 发布, 优化高频 DDL 处理,支持 Batch 模式,新增 Iceberg 支持
Apache Flink CDC 3.4.0 版本正式发布!经过4个月的开发,此版本强化了对高频表结构变更的支持,新增 batch 执行模式和 Apache Iceberg Sink 连接器,可将数据库数据全增量实时写入 Iceberg 数据湖。51位贡献者完成了259次代码提交,优化了 MySQL、MongoDB 等连接器,并修复多个缺陷。未来 3.5 版本将聚焦脏数据处理、数据限流等能力及 AI 生态对接。欢迎下载体验并提出反馈!
1166 1
Flink CDC 3.4 发布, 优化高频 DDL 处理,支持 Batch 模式,新增 Iceberg 支持
|
7月前
|
SQL API Apache
Dinky 和 Flink CDC 在实时整库同步的探索之路
本次分享围绕 Dinky 的整库同步技术演进,从传统数据集成方案的痛点出发,探讨了 Flink CDC Yaml 作业的探索历程。内容分为三个部分:起源、探索、未来。在起源部分,分析了传统数据集成方案中全量与增量割裂、时效性低等问题,引出 Flink CDC 的优势;探索部分详细对比了 Dinky CDC Source 和 Flink CDC Pipeline 的架构与能力,深入讲解了 YAML 作业的细节,如模式演变、数据转换等;未来部分则展望了 Dinky 对 Flink CDC 的支持与优化方向,包括 Pipeline 转换功能、Transform 扩展及实时湖仓治理等。
878 12
Dinky 和 Flink CDC 在实时整库同步的探索之路
|
5月前
|
消息中间件 SQL 关系型数据库
Flink CDC + Kafka 加速业务实时化
Flink CDC 是一种支持流批一体的分布式数据集成工具,通过 YAML 配置实现数据传输过程中的路由与转换操作。它已从单一数据源的 CDC 数据流发展为完整的数据同步解决方案,支持 MySQL、Kafka 等多种数据源和目标端(如 Delta Lake、Iceberg)。其核心功能包括多样化数据输入链路、Schema Evolution、Transform 和 Routing 模块,以及丰富的监控指标。相比传统 SQL 和 DataStream 作业,Flink CDC 提供更灵活的 Schema 变更控制和原始 binlog 同步能力。
|
8月前
|
Oracle 关系型数据库 Java
【YashanDB知识库】Flink CDC实时同步Oracle数据到崖山
本文介绍通过Flink CDC实现Oracle数据实时同步至崖山数据库(YashanDB)的方法,支持全量与增量同步,并涵盖新增、修改和删除的DML操作。内容包括环境准备(如JDK、Flink版本等)、Oracle日志归档启用、用户权限配置、增量日志记录设置、元数据迁移、Flink安装与配置、生成Flink SQL文件、Streampark部署,以及创建和启动实时同步任务的具体步骤。适合需要跨数据库实时同步方案的技术人员参考。
【YashanDB知识库】Flink CDC实时同步Oracle数据到崖山
|
8月前
|
关系型数据库 MySQL 数据库
基于Flink CDC 开发,支持Web-UI的实时KingBase 连接器,三大模式无缝切换,效率翻倍!
TIS 是一款基于Web-UI的开源大数据集成工具,通过与人大金仓Kingbase的深度整合,提供高效、灵活的实时数据集成方案。它支持增量数据监听和实时写入,兼容MySQL、PostgreSQL和Oracle模式,无需编写复杂脚本,操作简单直观,特别适合非专业开发人员使用。TIS率先实现了Kingbase CDC连接器的整合,成为业界首个开箱即用的Kingbase CDC数据同步解决方案,助力企业数字化转型。
1764 5
基于Flink CDC 开发,支持Web-UI的实时KingBase 连接器,三大模式无缝切换,效率翻倍!
|
8月前
|
存储 SQL Java
Flink CDC + Hologres高性能数据同步优化实践
本文整理自阿里云高级技术专家胡一博老师在Flink Forward Asia 2024数据集成(二)专场的分享,主要内容包括:1. Hologres介绍:实时数据仓库,支持毫秒级写入和高QPS查询;2. 写入优化:通过改进缓冲队列、连接池和COPY模式提高吞吐量和降低延迟;3. 消费优化:优化离线场景和分区表的消费逻辑,提升性能和资源利用率;4. 未来展望:进一步简化用户操作,支持更多DDL操作及全增量消费。Hologres 3.0全新升级为一体化实时湖仓平台,提供多项新功能并降低使用成本。
657 1
Flink CDC + Hologres高性能数据同步优化实践
|
8月前
|
分布式计算 关系型数据库 MySQL
Flink CDC 3.3.0 发布公告
Flink CDC 3.3.0 发布公告
363 14
|
8月前
|
SQL 弹性计算 DataWorks
Flink CDC 在阿里云 DataWorks 数据集成入湖场景的应用实践
Flink CDC 在阿里云 DataWorks 数据集成入湖场景的应用实践
399 6

热门文章

最新文章

下一篇
oss云网关配置