Python 多线程

简介: Python 多线程

线程案例



image.png

代码展示


import _thread
import time
from concurrent.futures import thread
from threading import Lock
def test(i):
    global unfinished_thread
    print ('开始运行第%s个进程'%i)
    time.sleep(i)
    lock.acquire()
    unfinished_thread -= 1
    print ('结束运行第%s个进程'%i)
    lock.release()
# 测试入口
if __name__ == '__main__':
    unfinished_thread = 0
    # 创建线程锁,用于判断线程是否全部完成
    lock = Lock()
    start_time = time.time()
    for i in range(1, 4, 1):
        try:
            # 多线程多分类同时运行
            unfinished_thread += 1
            _thread.start_new_thread(test, (i,))
        except:
            print ("Error: unable to start thread" + str(i))
    while True:
        # 等待所有线程完成
        lock.acquire()
        if unfinished_thread != 0:
            lock.release()
            time.sleep(1)
            print('多线程未结束,休眠1s,剩余线程数量:%s' % unfinished_thread)
        else:
            lock.release()
            break
    print ('运行完毕,耗时%s秒' % (time.time() - start_time))

多线程类似于同时执行多个不同程序,多线程运行有如下优点:


  • 使用线程可以把占据长时间的程序中的任务放到后台去处理。
  • 用户界面可以更加吸引人,这样比如用户点击了一个按钮去触发某些事件的处理,可以弹出一个进度条来显示处理的进度
  • 程序的运行速度可能加快
  • 在一些等待的任务实现上如用户输入、文件读写和网络收发数据等,线程就比较有用了。在这种情况下我们可以释放一些珍贵的资源如内存占用等等。


线程在执行过程中与进程还是有区别的。每个独立的进程有一个程序运行的入口、顺序执行序列和程序的出口。但是线程不能够独立执行,必须依存在应用程序中,由应用程序提供多个线程执行控制。


每个线程都有他自己的一组CPU寄存器, 称为线程的上下文,该上下文反映了线程上次运行该线程的CPU寄存器的状态。


指令指针和堆栈指针寄存器是线程上下文中两个最重要的寄存器,线程总是在进程得到上下文中运行的,这些地址都用于标志拥有线程的进程地址空间中的内存。


  • 线程可以被抢占(中断)。
  • 在其他线程正在运行时,线程可以暂时搁置(也称为睡眠) -- 这就是线程的退让。


开始学习Python线程


Python中使用线程有两种方式:函数或者用类来包装线程对象。

函数式:调用thread模块中的start_new_thread()函数来产生新线程。语法如下:


_thread.start_new_thread ( function, args[, kwargs] )


参数说明:


  • function - 线程函数。
  • args - 传递给线程函数的参数,他必须是个tuple类型。
  • kwargs - 可选参数。


实例(Python 2.0+)


#!/usr/bin/python # -- coding: UTF-8 -- import thread import time # 为线程定义一个函数 def print_time( threadName, delay): count = 0 while count < 5: time.sleep(delay) count += 1 print "%s: %s" % ( threadName, time.ctime(time.time()) ) # 创建两个线程 try: thread.start_new_thread( print_time, ("Thread-1", 2, ) ) thread.start_new_thread( print_time, ("Thread-2", 4, ) ) except: print "Error: unable to start thread" while 1: pass


执行以上程序输出结果如下:


Thread-1: Thu Jan 22 15:42:17 2009
Thread-1: Thu Jan 22 15:42:19 2009
Thread-2: Thu Jan 22 15:42:19 2009
Thread-1: Thu Jan 22 15:42:21 2009
Thread-2: Thu Jan 22 15:42:23 2009
Thread-1: Thu Jan 22 15:42:23 2009
Thread-1: Thu Jan 22 15:42:25 2009
Thread-2: Thu Jan 22 15:42:27 2009
Thread-2: Thu Jan 22 15:42:31 2009
Thread-2: Thu Jan 22 15:42:35 2009


线程的结束一般依靠线程函数的自然结束;也可以在线程函数中调用thread.exit(),他抛出SystemExit exception,达到退出线程的目的。


线程模块


Python通过两个标准库thread和threading提供对线程的支持。thread提供了低级别的、原始的线程以及一个简单的锁。


threading 模块提供的其他方法:


  • threading.currentThread(): 返回当前的线程变量。
  • threading.enumerate(): 返回一个包含正在运行的线程的list。正在运行指线程启动后、结束前,不包括启动前和终止后的线程。
  • threading.activeCount(): 返回正在运行的线程数量,与len(threading.enumerate())有相同的结果。


除了使用方法外,线程模块同样提供了Thread类来处理线程,Thread类提供了以下方法:


  • run(): 用以表示线程活动的方法。
  • start(): 启动线程活动。
  • join([time]): 等待至线程中止。这阻塞调用线程直至线程的join() 方法被调用中止-正常退出或者抛出未处理的异常-或者是可选的超时发生。
  • isAlive(): 返回线程是否活动的。
  • getName(): 返回线程名。
  • setName(): 设置线程名。


使用Threading模块创建线程


使用Threading模块创建线程,直接从threading.Thread继承,然后重写__init__方法和run方法:


实例(Python 2.0+)


#!/usr/bin/python # -- coding: UTF-8 -- import threading import time exitFlag = 0 class myThread (threading.Thread): #继承父类threading.Thread def init(self, threadID, name, counter): threading.Thread.init(self) self.threadID = threadID self.name = name self.counter = counter def run(self): #把要执行的代码写到run函数里面 线程在创建后会直接运行run函数 print "Starting " + self.name print_time(self.name, self.counter, 5) print "Exiting " + self.name def print_time(threadName, delay, counter): while counter: if exitFlag: (threading.Thread).exit() time.sleep(delay) print "%s: %s" % (threadName, time.ctime(time.time())) counter -= 1 # 创建新线程 thread1 = myThread(1, "Thread-1", 1) thread2 = myThread(2, "Thread-2", 2) # 开启线程 thread1.start() thread2.start() print "Exiting Main Thread"


以上程序执行结果如下;


Starting Thread-1
Starting Thread-2
Exiting Main Thread
Thread-1: Thu Mar 21 09:10:03 2013
Thread-1: Thu Mar 21 09:10:04 2013
Thread-2: Thu Mar 21 09:10:04 2013
Thread-1: Thu Mar 21 09:10:05 2013
Thread-1: Thu Mar 21 09:10:06 2013
Thread-2: Thu Mar 21 09:10:06 2013
Thread-1: Thu Mar 21 09:10:07 2013
Exiting Thread-1
Thread-2: Thu Mar 21 09:10:08 2013
Thread-2: Thu Mar 21 09:10:10 2013
Thread-2: Thu Mar 21 09:10:12 2013
Exiting Thread-2


线程同步


如果多个线程共同对某个数据修改,则可能出现不可预料的结果,为了保证数据的正确性,需要对多个线程进行同步。acquire(获得)release(释放)


使用Thread对象的Lock和Rlock可以实现简单的线程同步,这两个对象都有acquire方法和release方法,对于那些需要每次只允许一个线程操作的数据,可以将其操作放到acquire和release方法之间。如下:


多线程的优势在于可以同时运行多个任务(至少感觉起来是这样)。但是当线程需要共享数据时,可能存在数据不同步的问题。


考虑这样一种情况:一个列表里所有元素都是0,线程"set"从后向前把所有元素改成1,而线程"print"负责从前往后读取列表并打印。


那么,可能线程"set"开始改的时候,线程"print"便来打印列表了,输出就成了一半0一半1,这就是数据的不同步。为了避免这种情况,引入了锁的概念。


锁有两种状态——锁定和未锁定。 每当一个线程比如"set"要访问共享数据时,必须先获得锁定;如果已经有别的线程比如"print"获得锁定了,那么就让线程"set"暂停,也就是同步阻塞;等到线程"print"访问完毕,释放锁以后,再让线程"set"继续。


经过这样的处理,打印列表时要么全部输出0,要么全部输出1,不会再出现一半0一半1的尴尬场面。


实例(Python 2.0+)


#!/usr/bin/python # -- coding: UTF-8 -- import threading import time class myThread (threading.Thread): def init(self, threadID, name, counter): threading.Thread.init(self) self.threadID = threadID self.name = name self.counter = counter def run(self): print "Starting " + self.name # 获得锁,成功获得锁定后返回True # 可选的timeout参数不填时将一直阻塞直到获得锁定 # 否则超时后将返回False threadLock.acquire() print_time(self.name, self.counter, 3) # 释放锁 threadLock.release() def print_time(threadName, delay, counter): while counter: time.sleep(delay) print "%s: %s" % (threadName, time.ctime(time.time())) counter -= 1 threadLock = threading.Lock() threads = [] # 创建新线程 thread1 = myThread(1, "Thread-1", 1) thread2 = myThread(2, "Thread-2", 2) # 开启新线程 thread1.start() thread2.start() # 添加线程到线程列表 threads.append(thread1) threads.append(thread2) # 等待所有线程完成 for t in threads: t.join() print "Exiting Main Thread"


线程优先级队列( Queue)


Python的Queue模块中提供了同步的、线程安全的队列类,包括FIFO(先入先出)队列Queue,LIFO(后入先出)队列LifoQueue,和优先级队列PriorityQueue。这些队列都实现了锁原语,能够在多线程中直接使用。可以使用队列来实现线程间的同步。


Queue模块中的常用方法:


  • Queue.qsize() 返回队列的大小
  • Queue.empty() 如果队列为空,返回True,反之False
  • Queue.full() 如果队列满了,返回True,反之False
  • Queue.full 与 maxsize 大小对应
  • Queue.get([block[, timeout]])获取队列,timeout等待时间
  • Queue.get_nowait() 相当Queue.get(False)
  • Queue.put(item, block=True, timeout=None) 写入队列,timeout等待时间
  • Queue.put_nowait(item) 相当 Queue.put(item, False)
  • Queue.task_done() 在完成一项工作之后,Queue.task_done()函数向任务已经完成的队列发送一个信号
  • Queue.join() 实际上意味着等到队列为空,再执行别的操作


实例(Python 2.0+)


#!/usr/bin/python # -- coding: UTF-8 -- import Queue import threading import time exitFlag = 0 class myThread (threading.Thread): def init(self, threadID, name, q): threading.Thread.init(self) self.threadID = threadID self.name = name self.q = q def run(self): print "Starting " + self.name process_data(self.name, self.q) print "Exiting " + self.name def process_data(threadName, q): while not exitFlag: queueLock.acquire() if not workQueue.empty(): data = q.get() queueLock.release() print "%s processing %s" % (threadName, data) else: queueLock.release() time.sleep(1) threadList = ["Thread-1", "Thread-2", "Thread-3"] nameList = ["One", "Two", "Three", "Four", "Five"] queueLock = threading.Lock() workQueue = Queue.Queue(10) threads = [] threadID = 1 # 创建新线程 for tName in threadList: thread = myThread(threadID, tName, workQueue) thread.start() threads.append(thread) threadID += 1 # 填充队列 queueLock.acquire() for word in nameList: workQueue.put(word) queueLock.release() # 等待队列清空 while not workQueue.empty(): pass # 通知线程是时候退出 exitFlag = 1 # 等待所有线程完成 for t in threads: t.join() print "Exiting Main Thread"


以上程序执行结果:


Starting Thread-1
Starting Thread-2
Starting Thread-3
Thread-1 processing One
Thread-2 processing Two
Thread-3 processing Three
Thread-1 processing Four
Thread-2 processing Five
Exiting Thread-3
Exiting Thread-1
Exiting Thread-2
Exiting Main Thread


相关文章
|
4月前
|
数据采集 存储 JSON
Python爬取知乎评论:多线程与异步爬虫的性能优化
Python爬取知乎评论:多线程与异步爬虫的性能优化
|
4月前
|
人工智能 安全 调度
Python并发编程之线程同步详解
并发编程在Python中至关重要,线程同步确保多线程程序正确运行。本文详解线程同步机制,包括互斥锁、信号量、事件、条件变量和队列,探讨全局解释器锁(GIL)的影响及解决线程同步问题的最佳实践,如避免全局变量、使用线程安全数据结构、精细化锁的使用等。通过示例代码帮助开发者理解并提升多线程程序的性能与可靠性。
187 0
|
1月前
|
Java 调度 数据库
Python threading模块:多线程编程的实战指南
本文深入讲解Python多线程编程,涵盖threading模块的核心用法:线程创建、生命周期、同步机制(锁、信号量、条件变量)、线程通信(队列)、守护线程与线程池应用。结合实战案例,如多线程下载器,帮助开发者提升程序并发性能,适用于I/O密集型任务处理。
248 0
|
3月前
|
数据采集 消息中间件 并行计算
Python多线程与多进程性能对比:从原理到实战的深度解析
在Python编程中,多线程与多进程是提升并发性能的关键手段。本文通过实验数据、代码示例和通俗比喻,深入解析两者在不同任务类型下的性能表现,帮助开发者科学选择并发策略,优化程序效率。
268 1
|
4月前
|
数据采集 监控 调度
干货分享“用 多线程 爬取数据”:单线程 + 协程的效率反超 3 倍,这才是 Python 异步的正确打开方式
在 Python 爬虫中,多线程因 GIL 和切换开销效率低下,而协程通过用户态调度实现高并发,大幅提升爬取效率。本文详解协程原理、实战对比多线程性能,并提供最佳实践,助你掌握异步爬虫核心技术。
|
5月前
|
JSON 算法 Java
打造终端里的下载利器:Python实现可恢复式多线程下载器
在数字时代,大文件下载已成为日常需求。本文教你用Python打造专业级下载器,支持断点续传、多线程加速、速度限制等功能,显著提升终端下载体验。内容涵盖智能续传、多线程分块下载、限速控制及Rich库构建现代终端界面,助你从零构建高效下载工具。
373 1
|
4月前
|
数据采集 存储 Java
多线程Python爬虫:加速大规模学术文献采集
多线程Python爬虫:加速大规模学术文献采集
|
5月前
|
数据采集 网络协议 前端开发
Python多线程爬虫模板:从原理到实战的完整指南
多线程爬虫通过并发请求大幅提升数据采集效率,适用于大规模网页抓取。本文详解其原理与实现,涵盖任务队列、线程池、会话保持、异常处理、反爬对抗等核心技术,并提供可扩展的Python模板代码,助力高效稳定的数据采集实践。
256 0
|
9月前
|
Python
python3多线程中使用线程睡眠
本文详细介绍了Python3多线程编程中使用线程睡眠的基本方法和应用场景。通过 `time.sleep()`函数,可以使线程暂停执行一段指定的时间,从而控制线程的执行节奏。通过实际示例演示了如何在多线程中使用线程睡眠来实现计数器和下载器功能。希望本文能帮助您更好地理解和应用Python多线程编程,提高程序的并发能力和执行效率。
351 20