仿射
在OpenCV中,仿射变换是指图像经过一系列的几何变换来实现的平移,旋转等多种操作。该变换能够保持图像的平直性与平行性。平直性是指图像经过仿射变换后,直线仍然是直线;平行性是指图像在完成仿射变换后,平行性依然是平行线。
在OpenCV中,它给我们提供的仿射函数为cv2.warpAffine(),其通过一个变换矩阵M实现,对于矩阵运算不大了解的,可以记住后面讲解的,也可以学习离散数学或线性代数,两者都讲解到了矩阵运算。
仿射函数的定义如下:
def warpAffine(src, M, dsize, dst=None, flags=None, borderMode=None, borderValue=None):
src:代表要仿射的原始图像
M:代表一个2*3的变换矩阵,使用不同的变换矩阵,就可以实现不同的仿射变换。
dszie:代表输出图像的尺寸大小。
dst:代表仿射后的输出图像
flags:代表插值方法,默认为INTER_LINEAR。当该值为WARP_INVERSE_MAP时,意味着M是逆变换类型,实现从目标图像dst到原始图像src的逆变换。详细参数,上篇博文表格就是。
borderMode:代表边类型,默认为BORDER_CONSTANT。当该值为BORDER_TRANSPARENT时,意味着目标图像内的值不做改变,这些值对应原始图像内的异常值。
borderValue:代表边界值,默认是0。
综上所示,我们常用的参数为:src,M,dsize。
平移
已知仿射公式为:
假设我们现在要将图像向右平移50个像素,向下平移100个像素,那么公式替换后如下所示:
dst(x,y)=src(x+50,y+100)
dst(x,y)=src(1x,+0y+50,0x+1y+100)
得到M中的各个元素值为:
M11=1
M12=0
M13=50
M21=0
M22=1
M23=100
综上所述,右平移50个像素,向下平移100个像素的变换矩阵为:
已知变换矩阵与原始图像,那么很简单的我们就可以完成图像的平移操作,具体代码如下所示:
import cv2 import numpy as np img = cv2.imread("4.jpg") h, w = img.shape[:2] x = 50 y = 100 M = np.float32([[1, 0, x], [0, 1, y]]) move_img = cv2.warpAffine(img, M, (w, h)) cv2.imshow("img", img) cv2.imshow("move_img", move_img) cv2.waitKey() cv2.destroyAllWindows()
运行之后,效果如下所示:
旋转
在使用函数cv2.warpAffine()对图像进行旋转时,可以通过函数cv2.getRotationMatrix2D()获取转换矩阵。该函数的语法格式为:
def getRotationMatrix2D(center, angle, scale):
center:为旋转的中心
angle:为旋转的角度,正数表示逆时针旋转,负数表示顺时针旋转
scale:为变换尺寸(也就是前文说的缩放大小)
下面,我们来将上图在旋转45度,具体代码如下所示:
import cv2 img = cv2.imread("4.jpg") h, w = img.shape[:2] M = cv2.getRotationMatrix2D((w / 2, h / 2), 45, 0.6) move_img = cv2.warpAffine(img, M, (w, h)) cv2.imshow("img", img) cv2.imshow("move_img", move_img) cv2.waitKey() cv2.destroyAllWindows()
更改M变换矩阵就行,这里(w / 2, h / 2)为图像的中心坐标,45为正数,就是逆时针旋转45度,0.6就是将图像缩放0.6倍。
运行之后,效果如下所示: