常见排序算法-冒泡排序、选择排序 、插入排序 、快速排序、 归并排序 、堆排序

简介: 排序算法• 冒泡排序• 冒泡排序的优化• 选择排序• 插入排序• 快速排序• 归并排序• 堆排序

冒泡排序


145866746f6f4a6ab7348bed9c731daa.gif

平均时间复杂度: o(n^2)

最好时间: o(n)

最坏时间: o(n^2)

空间复杂度: o(1)

是否稳定: 稳定

简单的冒泡排序

    public int[] bubbleSort(int [] nums){
        int len = nums.length;
        if(len <= 1) return nums;
        for(int i = 0;i < len;i++){
            for(int j = 0;j < len-i-1;j++){
                if(nums[j] > nums[j+1]){
                    int temp = nums[j+1];
                    nums[j+1] = nums[j];
                    nums[j] = temp;
                }
            }
        }
        return nums;
    }


冒泡排序的优化

设置标志位

设置一个标志位来标识这次遍历是否进行过交换

如果没有进行过交换则表示数组已经有序,直接退出

 public int[] binarySort(int [] nums){
        int len = nums.length;
        if(len <= 1) return nums;
        for(int i = 0;i < len-1;i++){
            boolean isSort = true;  //是否有序
            for(int j = 0;j < len-i-1;j++){
                if(nums[j] > nums[j+1]){
                    int temp = nums[j+1];
                    nums[j+1] = nums[j];
                    nums[j] = temp;
                    isSort = false;
                }
            }
            if(isSort) break;
        }
        return nums;
    }


设置结束位置

比如初始数组为[4,3,2,1,5,6]

经过第一次排序后数组变为[3,2,1,4,5,6]

如果按照普通冒泡排序下次需要遍历的下标范围为[0,4]

但是[3,4]是已经有序的,所以可以减少比较,保存上次交换的结束位置

public int[] bubbleSort(int [] nums){
    int len = nums.length;
    if(len <= 1) return nums;
    int max_index = len-1;
    int index = max_index;
    for(int i = 0;i < len-1;i++){
        boolean isSort = true;  //是否有序
        for(int j = 0;j < index;j++){
            if(nums[j] > nums[j+1]){
                int temp = nums[j+1];
                nums[j+1] = nums[j];
                nums[j] = temp;
                isSort = false;
                max_index=j;
            }
        }
        if(isSort) break;
        index = max_index;
    }
    return nums;
    }

双向冒泡排序

与设置结束位置类似,这个是也设置了起始位置

使得在left之前的都是已经排好序的

    public int[] bubbleSort(int [] nums){
        int len = nums.length;
        if(len <= 1) return nums;
        int left = 0;
        int right = len-1;
        int tleft = 0,tright = 0;
        while(left < right){
            boolean isSort = true;
            for(int i = left;i < right;i++){
                if(nums[i+1] < nums[i]){
                    int temp = nums[i];
                    nums[i] = nums[i+1];
                    nums[i+1] = temp;
                    isSort = false;
                    tright = i;
                }
            }
            if(isSort)break;
            right = tright;
            isSort = true;
            for(int i = right;i > left;i--){
                if(nums[i] < nums[i-1]){
                    int temp = nums[i];
                    nums[i] = nums[i-1];
                    nums[i-1] = temp;
                    isSort = false;
                    tleft = i;
                }
            }
            if(isSort)break;
            left = tleft;
        }
        return nums;
    }

选择排序


fd3b383f48e74e8e86067846af27c12b.gif

平均时间复杂度: o(n^2)

最好时间: o(n^2)

最坏时间: o(n^2)

空间复杂度: o(1)

是否稳定: 不稳定

选择排序

    public int[] selectSort(int [] nums){
        int len = nums.length;
        if(len <= 1) return nums;
        for(int i = 0;i < len;i++){
            int minIndex = i;
            for(int j = i;j < len;j++){
                if(nums[j] < nums[minIndex]){
                    minIndex = j;
                }
            }
            int t = nums[minIndex];
            nums[minIndex] = nums[i];
            nums[i] = t;
        }
        return nums;
    }


插入排序


7a7a54d942f74bfdb4b0629173d24c0c.gif

平均时间复杂度: o(n^2)

最好时间: o(n)

最坏时间: o(n^2)

空间复杂度: o(1)

是否稳定: 稳定

插入排序

    public int[] insertSort(int [] nums){
        int len = nums.length;
        if(len <= 1) return nums;
        for(int i = 1;i < len;i++){
            int cur = nums[i];
            int preIndex = i - 1;
            while(preIndex >= 0 && nums[preIndex] > cur){
                nums[preIndex+1] = nums[preIndex];
                preIndex--;
            }
            nums[preIndex+1] = cur;
        }
        return nums;
    }


快速排序


e34b13dd820448efb8f6664e5b1192dd.gif

平均时间复杂度: o(nlogn)

最好时间: o(nlogn)

最坏时间: o(n^2)

空间复杂度: o(logn)

是否稳定: 不稳定

快速排序

    public void quickSort(int [] nums,int left,int right){
       if(left >= right) return;
       int l = left - 1;
       int r = right + 1;
       int t = nums[left];
       while(l < r){
           do l++;while(nums[l] < t);
           do r--;while(nums[r] > t);
           if(l < r){
               int temp = nums[l];
               nums[l] = nums[r];
               nums[r] = temp;
           }
       } 
       quickSort(nums,left,r);
       quickSort(nums,r+1,right);
    }


归并排序


73d0a113dfc94817850eb68e93437e94.gif

平均时间复杂度: o(nlogn)

最好时间: o(nlogn)

最坏时间: o(nlogn)

空间复杂度: o(n)

是否稳定: 稳定

    public void mergeSort(int [] nums,int left,int right){
        if(left >= right) return;
        int mid = left + right >> 1;
        mergeSort(nums,left,mid);
        mergeSort(nums,mid+1,right);
        //需要合并 [left,mid] [mid+1,right]
        int []temp = new int[right-left+1];
        int l = left,r = mid+1,k = 0;
        while(l <= mid && r <= right){
            if(nums[l] < nums[r]) temp[k++] = nums[l++];
            else temp[k++] = nums[r++];
        }
        while(l <= mid) temp[k++] = nums[l++];
        while(r <= right) temp[k++] = nums[r++];
        for(int i = right;i >= left;i--){
            nums[i] = temp[--k];
        }
    }


堆排序


22b96ad4c2174e4e8f6bfc5f47cecd6a.gif

平均时间复杂度: o(nlogn)

最好时间: o(nlogn)

最坏时间: o(nlogn)

空间复杂度: o(1)

是否稳定: 不稳定

    public void heapSort(int [] nums){
        int len = nums.length;
        if(len <= 1) return;
        //构造大根堆
        for(int i = (len-1)/2; i>=0 ;i--){
            heap(nums,i,len);
        }
        //将根弄到最后
        for(int i = len-1;i >=0; i--){
            int t = nums[0];
            nums[0] = nums[i];
            nums[i] = t;
            heap(nums,0,i);
        }
    }
    //子树构建大顶堆
    public void heap(int[] nums,int index,int size){
        int max = index;
        int left = 2 * index + 1;
        int right = 2 * index + 2;
        if(left < size && nums[left] > nums[max]) max = left;
        if(right < size && nums[right] > nums[max]) max = right;
        if(max != index){
            int t = nums[index];
            nums[index] = nums[max];
            nums[max] = t;
            heap(nums,max,size);
        }
    }
相关文章
|
3天前
|
算法 前端开发
前端算法之快速排序
前端算法之快速排序
14 0
|
3天前
|
算法 前端开发 搜索推荐
前端算法之插入排序
前端算法之插入排序
12 0
|
3天前
|
搜索推荐 算法 Java
快速排序------一种优雅的排序算法
快速排序------一种优雅的排序算法
|
3天前
|
搜索推荐 算法 Java
sort-05-insert sort 插入排序算法详解
这是一个关于排序算法的系列文章总结,包括冒泡排序、快速排序、选择排序、堆排序、插入排序等10种排序算法的详细讲解和Java实现。插入排序是一种简单直观的排序算法,通过构建有序序列并逐个插入新元素来排序。提供的Java代码展示了插入排序的实现过程,并附有测试示例。所有算法已开源在GitHub项目[https://github.com/houbb/sort](https://github.com/houbb/sort)中。
|
3天前
|
搜索推荐 算法 Java
sort-01-bubble sort 冒泡排序算法详解
这是一个关于排序算法的系列文章摘要。作者整理了10种不同的排序算法,包括冒泡排序、快速排序、选择排序、堆排序、插入排序、希尔排序、归并排序、计数排序、桶排序和大文件外部排序。文章详细介绍了冒泡排序的工作原理、流程,并提供了代码实现,强调了在实现中考虑的改进点,如统一接口、实用性增强和日志输出。此外,还提供了一个排序接口和工具类以方便使用,并通过测试代码和日志展示了排序过程。整个系列旨在帮助读者理解和掌握排序算法。相关代码已开源在GitHub。
|
3天前
|
算法
快速排序——“数据结构与算法”
快速排序——“数据结构与算法”
|
3天前
|
算法 数据安全/隐私保护 计算机视觉
基于二维CS-SCHT变换和LABS方法的水印嵌入和提取算法matlab仿真
该内容包括一个算法的运行展示和详细步骤,使用了MATLAB2022a。算法涉及水印嵌入和提取,利用LAB色彩空间可能用于隐藏水印。水印通过二维CS-SCHT变换、低频系数处理和特定解码策略来提取。代码段展示了水印置乱、图像处理(如噪声、旋转、剪切等攻击)以及水印的逆置乱和提取过程。最后,计算并保存了比特率,用于评估水印的稳健性。
|
1天前
|
算法
MATLAB|【免费】融合正余弦和柯西变异的麻雀优化算法SCSSA-CNN-BiLSTM双向长短期记忆网络预测模型
这段内容介绍了一个使用改进的麻雀搜索算法优化CNN-BiLSTM模型进行多输入单输出预测的程序。程序通过融合正余弦和柯西变异提升算法性能,主要优化学习率、正则化参数及BiLSTM的隐层神经元数量。它利用一段简单的风速数据进行演示,对比了改进算法与粒子群、灰狼算法的优化效果。代码包括数据导入、预处理和模型构建部分,并展示了优化前后的效果。建议使用高版本MATLAB运行。
|
3天前
|
算法 计算机视觉
基于高斯混合模型的视频背景提取和人员跟踪算法matlab仿真
该内容是关于使用MATLAB2013B实现基于高斯混合模型(GMM)的视频背景提取和人员跟踪算法。算法通过GMM建立背景模型,新帧与模型比较,提取前景并进行人员跟踪。文章附有程序代码示例,展示从读取视频到结果显示的流程。最后,结果保存在Result.mat文件中。
|
3天前
|
资源调度 算法 块存储
m基于遗传优化的LDPC码OMS译码算法最优偏移参数计算和误码率matlab仿真
MATLAB2022a仿真实现了遗传优化的LDPC码OSD译码算法,通过自动搜索最佳偏移参数ΔΔ以提升纠错性能。该算法结合了低密度奇偶校验码和有序统计译码理论,利用遗传算法进行全局优化,避免手动调整,提高译码效率。核心程序包括编码、调制、AWGN信道模拟及软输入软输出译码等步骤,通过仿真曲线展示了不同SNR下的误码率性能。
9 1