【数据库】Star Schema Benchmark 标准测试集优化(三)

简介: 【数据库】Star Schema Benchmark 标准测试集优化(三)

正文


这是Star Schema Benchmark 标准测试集优化的第三篇,前一篇我们分析了下表数据,这一篇是最后一篇了。


一、分析算法路径


更新到前一篇的时候,其实专利技术已经集成到数据库中了,这个算法路径,主要是验证一下:在测试环境中的算法路径,是否和开发环境中一致。实际结果如下,13 条SQL语句的算法路径和开发环境中的算法路径,经过验证是完全一致的。

2022-10-20 01:39:53.344 - SQL2: select sum(lo_revenue) as revenue from lineorder,dates where lo_orderdate = d_datekey and d_year = 1993 and lo_discount between 1 and 3 and lo_quantity < 25; ;
  Status: PASS, Elapsed: 3.923, Affected: 1
  Info: Job[67:RESTRICT, tasks:193, time:3,591, size: 3,576,178, [0|193|3,591] ]
Job[69:DIMENSION_JOIN, tasks:193, time:16, size: 3,576,178, [0|193|15] ]
Job[71:OUTPUT_HASH_GROUP_BY, tasks:6, time:166, size: 6, [0|6|167] ]
Job[73:MERGE_HASH_GROUPBY_PARTITION, tasks:1, time:3, size: 1, [0|1|3] ]
Job[75:PROJECT, tasks:1, time:2, size: 1, [0|1|1] ]
total time: 3,788, record count: 1
restrict的时间/整体时间: 3591/3788
result:
REVENUE       |
- - - - - - -
6568512155417 |
2022-10-20 01:39:59.707 - SQL4: select sum(lo_revenue) as revenue from lineorder,dates where lo_orderdate = d_datekey and d_yearmonthnum = 199401 and lo_discount between 4 and 6 and lo_quantity between 26 and 35; ;
  Status: PASS, Elapsed: 1.767, Affected: 1
  Info: Job[99:RESTRICT, tasks:193, time:1,727, size: 126,610, [0|193|1,728] ]
Job[101:DIMENSION_JOIN, tasks:193, time:8, size: 126,610, [0|193|8] ]
Job[103:OUTPUT_HASH_GROUP_BY, tasks:2, time:22, size: 2, [0|2|22] ]
Job[105:MERGE_HASH_GROUPBY_PARTITION, tasks:1, time:1, size: 1, [0|1|1] ]
Job[107:PROJECT, tasks:1, time:1, size: 1, [0|1|1] ]
total time: 1,764, record count: 1
restrict的时间/整体时间: 1727/1764
result:
REVENUE      |
- - - - - - -
550150245374 |
2022-10-20 01:40:04.552 - SQL6: select sum(lo_revenue) as revenue from lineorder,dates where lo_orderdate = d_datekey and d_weeknuminyear = 6 and d_year = 1994 and lo_discount between 5 and 7 and lo_quantity between 26 and 35; ;
  Status: PASS, Elapsed: 2.138, Affected: 1
  Info: Job[131:RESTRICT, tasks:193, time:2,108, size: 28,441, [0|193|2,109] ]
Job[133:DIMENSION_JOIN, tasks:193, time:7, size: 28,441, [0|193|7] ]
Job[135:OUTPUT_HASH_GROUP_BY, tasks:1, time:15, size: 1, [0|1|15] ]
Job[137:MERGE_HASH_GROUPBY_PARTITION, tasks:1, time:1, size: 1, [0|1|1] ]
Job[139:PROJECT, tasks:1, time:1, size: 1, [0|1|1] ]
total time: 2,136, record count: 1
restrict的时间/整体时间: 2108/2136
result:
REVENUE      |
- - - - - - -
122223605792 |
2022-10-20 01:40:31.923 - SQL8: select sum(lo_revenue) as lo_revenue, d_year, p_brand from lineorder ,dates,part,supplier where lo_orderdate = d_datekey and lo_partkey = p_partkey and lo_suppkey = s_suppkey and p_category = 'MFGR#12' and s_region = 'AMERICA' group by d_year, p_brand order by d_year, p_brand; ;
  Status: PASS, Elapsed: 4.714, Affected: 280
  Info: Job[193:RESTRICT, tasks:193, time:4,342, size: 1,442,564, [0|193|4,342] ]
Job[195:DIMENSION_JOIN, tasks:193, time:9, size: 1,442,564, [0|193|10] ]
Job[197:DIMENSION_JOIN, tasks:193, time:5, size: 1,442,564, [0|193|5] ]
Job[199:DIMENSION_JOIN, tasks:193, time:5, size: 1,442,564, [0|193|5] ]
Job[202:OUTPUT_HASH_GROUP_BY, tasks:6, time:332, size: 1,680, [0|6|332] ]
Job[204:MERGE_HASH_GROUPBY_PARTITION, tasks:7, time:4, size: 280, [0|7|4] ]
Job[206:PROJECT, tasks:7, time:3, size: 280, [0|7|3] ]
Job[208:RANGE_SORT, tasks:7, time:2, size: 280, [0|7|2] ]
Job[212:PARTITION_TABLET, tasks:7, time:0, size: 280, [0|7|0] ]
Job[214:MERGE_ORDERBY_RANGES, tasks:1, time:1, size: 70, [0|1|1] ]
total time: 4,711, record count: 280
restrict的时间/整体时间: 4342/4711
result:
LO_REVENUE  |D_YEAR     |P_BRAND    |
- - - - - - - - - - - - - - - - - -
18712903257 |1992       |MFGR#121   |
20576919851 |1992       |MFGR#1210  |
20452654696 |1992       |MFGR#1211  |
2022-10-20 01:40:37.664 - SQL10: select sum(lo_revenue) as lo_revenue, d_year, p_brand from lineorder,dates,part,supplier where lo_orderdate = d_datekey and lo_partkey = p_partkey and lo_suppkey = s_suppkey and p_brand between 'MFGR#2221' and 'MFGR#2228' and s_region = 'ASIA' group by d_year, p_brand order by d_year, p_brand; ;
  Status: PASS, Elapsed: 1.24, Affected: 56
  Info: Job[292:RESTRICT, tasks:193, time:1,017, size: 287,885, [0|193|1,017] ]
Job[294:DIMENSION_JOIN, tasks:193, time:5, size: 287,885, [0|193|5] ]
Job[296:DIMENSION_JOIN, tasks:193, time:5, size: 287,885, [0|193|5] ]
Job[298:DIMENSION_JOIN, tasks:193, time:4, size: 287,885, [0|193|4] ]
Job[301:OUTPUT_HASH_GROUP_BY, tasks:3, time:193, size: 168, [0|3|193] ]
Job[303:MERGE_HASH_GROUPBY_PARTITION, tasks:7, time:2, size: 56, [0|7|2] ]
Job[305:PROJECT, tasks:7, time:1, size: 56, [0|7|1] ]
Job[307:RANGE_SORT, tasks:7, time:1, size: 56, [0|7|1] ]
Job[311:PARTITION_TABLET, tasks:7, time:0, size: 56, [0|7|0] ]
Job[313:MERGE_ORDERBY_RANGES, tasks:1, time:0, size: 12, [0|1|0] ]
total time: 1,235, record count: 56
restrict的时间/整体时间: 1017/1235
result:
LO_REVENUE  |D_YEAR     |P_BRAND    |
- - - - - - - - - - - - - - - - - -
19803695538 |1992       |MFGR#2221  |
19639734537 |1992       |MFGR#2222  |
19945070508 |1992       |MFGR#2223  |
2022-10-20 01:40:39.888 - SQL12: select sum(lo_revenue) as lo_revenue, d_year, p_brand from lineorder,dates,part,supplier where lo_orderdate = d_datekey and lo_partkey = p_partkey and lo_suppkey = s_suppkey and p_brand = 'MFGR#2239' and s_region = 'EUROPE' group by d_year, p_brand order by d_year, p_brand; ;
  Status: PASS, Elapsed: 0.862, Affected: 7
  Info: Job[397:RESTRICT, tasks:193, time:785, size: 35,599, [0|193|785] ]
Job[399:DIMENSION_JOIN, tasks:193, time:4, size: 35,599, [0|193|4] ]
Job[401:DIMENSION_JOIN, tasks:193, time:3, size: 35,599, [0|193|3] ]
Job[403:DIMENSION_JOIN, tasks:193, time:3, size: 35,599, [0|193|3] ]
Job[406:OUTPUT_HASH_GROUP_BY, tasks:1, time:49, size: 7, [0|1|49] ]
Job[408:MERGE_HASH_GROUPBY_PARTITION, tasks:7, time:8, size: 7, [0|7|8] ]
Job[410:PROJECT, tasks:7, time:0, size: 7, [0|7|0] ]
Job[412:RANGE_SORT, tasks:5, time:1, size: 7, [0|5|1] ]
Job[416:PARTITION_TABLET, tasks:5, time:0, size: 7, [0|5|0] ]
Job[418:MERGE_ORDERBY_RANGES, tasks:1, time:0, size: 2, [0|1|0] ]
total time: 859, record count: 7
restrict的时间/整体时间: 785/859
result:
LO_REVENUE  |D_YEAR     |P_BRAND    |
- - - - - - - - - - - - - - - - - -
19700225276 |1992       |MFGR#2239  |
19306484466 |1993       |MFGR#2239  |
19398411013 |1994       |MFGR#2239  |
2022-10-20 01:41:02.935 - SQL14: select c_nation, s_nation, d_year, sum(lo_revenue) as lo_revenue from lineorder,dates,customer,supplier where lo_orderdate = d_datekey and lo_custkey = c_custkey and lo_suppkey = s_suppkey and c_region = 'ASIA' and s_region = 'ASIA'and d_year >= 1992 and d_year <= 1997 group by c_nation, s_nation, d_year order by d_year asc, lo_revenue desc; ;
  Status: PASS, Elapsed: 5.015, Affected: 150
  Info: Job[502:RESTRICT, tasks:193, time:3,856, size: 6,570,093, [0|193|3,857] ]
Job[504:DIMENSION_JOIN, tasks:193, time:5, size: 6,570,093, [0|193|4] ]
Job[506:DIMENSION_JOIN, tasks:193, time:3, size: 6,570,093, [0|193|3] ]
Job[508:DIMENSION_JOIN, tasks:193, time:3, size: 6,570,093, [0|193|3] ]
Job[511:OUTPUT_HASH_GROUP_BY, tasks:6, time:1,132, size: 900, [0|6|1,132] ]
Job[513:MERGE_HASH_GROUPBY_PARTITION, tasks:7, time:3, size: 150, [0|7|3] ]
Job[515:PROJECT, tasks:7, time:1, size: 150, [0|7|1] ]
Job[517:RANGE_SORT, tasks:7, time:1, size: 150, [0|7|1] ]
Job[521:PARTITION_TABLET, tasks:7, time:0, size: 150, [0|7|0] ]
Job[523:MERGE_ORDERBY_RANGES, tasks:1, time:1, size: 22, [0|1|1] ]
total time: 5,012, record count: 150
restrict的时间/整体时间: 3856/5012
result:
C_NATION   |S_NATION   |D_YEAR     |LO_REVENUE   |
- - - - - - - - - - - - - - - - - - - - - - - - -
JAPAN      |INDIA      |1992       |163691240866 |
CHINA      |INDONESIA  |1992       |163434081261 |
CHINA      |INDIA      |1992       |163430796231 |
2022-10-20 01:41:11.469 - SQL16: select c_city, s_city, d_year, sum(lo_revenue) as lo_revenue from lineorder,dates,customer,supplier where lo_orderdate = d_datekey and lo_custkey = c_custkey and lo_suppkey = s_suppkey and  c_nation = 'UNITED STATES' and s_nation = 'UNITED STATES' and d_year >= 1992 and d_year <= 1997 group by c_city, s_city, d_year order by d_year asc, lo_revenue desc; ;
  Status: PASS, Elapsed: 3.478, Affected: 600
  Info: Job[589:RESTRICT, tasks:193, time:3,262, size: 264,531, [0|193|3,262] ]
Job[591:DIMENSION_JOIN, tasks:193, time:4, size: 264,531, [0|193|4] ]
Job[593:DIMENSION_JOIN, tasks:193, time:4, size: 264,531, [0|193|4] ]
Job[595:DIMENSION_JOIN, tasks:193, time:3, size: 264,531, [0|193|3] ]
Job[598:OUTPUT_HASH_GROUP_BY, tasks:3, time:189, size: 1,800, [0|3|189] ]
Job[600:MERGE_HASH_GROUPBY_PARTITION, tasks:7, time:5, size: 600, [0|7|5] ]
Job[602:PROJECT, tasks:7, time:1, size: 600, [0|7|1] ]
Job[604:RANGE_SORT, tasks:7, time:1, size: 600, [0|7|1] ]
Job[608:PARTITION_TABLET, tasks:7, time:0, size: 600, [0|7|0] ]
Job[610:MERGE_ORDERBY_RANGES, tasks:1, time:0, size: 100, [0|1|0] ]
total time: 3,475, record count: 600
restrict的时间/整体时间: 3262/3475
result:
C_CITY     |S_CITY     |D_YEAR     |LO_REVENUE |
- - - - - - - - - - - - - - - - - - - - - - - -
UNITED ST3 |UNITED ST4 |1992       |1915435842 |
UNITED ST8 |UNITED ST0 |1992       |1910327375 |
UNITED ST5 |UNITED ST0 |1992       |1893024189 |
2022-10-20 01:41:16.505 - SQL18: select c_city, s_city, d_year, sum(lo_revenue) as lo_revenue from lineorder,dates,customer,supplier where lo_orderdate = d_datekey and lo_custkey = c_custkey and lo_suppkey = s_suppkey and (c_city='UNITED KI1' or c_city='UNITED KI5') and (s_city='UNITED KI1' or s_city='UNITED KI5') and d_year >= 1992 and d_year <= 1997 group by c_city, s_city, d_year order by d_year asc, lo_revenue desc; ;
  Status: PASS, Elapsed: 1.588, Affected: 24
  Info: Job[679:RESTRICT, tasks:193, time:1,525, size: 10,616, [0|193|1,525] ]
Job[681:DIMENSION_JOIN, tasks:193, time:6, size: 10,616, [0|193|6] ]
Job[683:DIMENSION_JOIN, tasks:193, time:4, size: 10,616, [0|193|4] ]
Job[685:DIMENSION_JOIN, tasks:193, time:3, size: 10,616, [0|193|3] ]
Job[688:OUTPUT_HASH_GROUP_BY, tasks:1, time:35, size: 24, [0|1|35] ]
Job[690:MERGE_HASH_GROUPBY_PARTITION, tasks:7, time:2, size: 24, [0|7|2] ]
Job[692:PROJECT, tasks:7, time:0, size: 24, [0|7|0] ]
Job[694:RANGE_SORT, tasks:7, time:1, size: 24, [0|7|1] ]
Job[698:PARTITION_TABLET, tasks:7, time:0, size: 24, [0|7|0] ]
Job[700:MERGE_ORDERBY_RANGES, tasks:1, time:1, size: 3, [0|1|1] ]
total time: 1,585, record count: 24
restrict的时间/整体时间: 1525/1585
result:
C_CITY     |S_CITY     |D_YEAR     |LO_REVENUE |
- - - - - - - - - - - - - - - - - - - - - - - -
UNITED KI1 |UNITED KI1 |1992       |1786080690 |
UNITED KI5 |UNITED KI1 |1992       |1705128984 |
UNITED KI1 |UNITED KI5 |1992       |1620054330 |
2022-10-20 01:41:19.166 - SQL20: select c_city, s_city, d_year, sum(lo_revenue) as lo_revenue from lineorder,dates,customer,supplier where lo_orderdate = d_datekey and lo_custkey = c_custkey and lo_suppkey = s_suppkey and (c_city='UNITED KI1' or c_city='UNITED KI5') and (s_city='UNITED KI1' or s_city='UNITED KI5') and d_yearmonth  = 'Dec1997' group by c_city, s_city, d_year order by d_year asc, lo_revenue desc; ;
  Status: PASS, Elapsed: 1.046, Affected: 4
  Info: Job[775:RESTRICT, tasks:193, time:1,012, size: 151, [0|193|1,012] ]
Job[777:DIMENSION_JOIN, tasks:109, time:4, size: 151, [0|109|4] ]
Job[779:DIMENSION_JOIN, tasks:109, time:4, size: 151, [0|109|4] ]
Job[781:DIMENSION_JOIN, tasks:109, time:3, size: 151, [0|109|3] ]
Job[784:OUTPUT_HASH_GROUP_BY, tasks:1, time:13, size: 4, [0|1|13] ]
Job[786:MERGE_HASH_GROUPBY_PARTITION, tasks:7, time:1, size: 4, [0|7|1] ]
Job[788:PROJECT, tasks:7, time:1, size: 4, [0|7|1] ]
Job[790:RANGE_SORT, tasks:2, time:0, size: 4, [0|2|0] ]
Job[794:PARTITION_TABLET, tasks:2, time:0, size: 4, [0|2|0] ]
Job[796:MERGE_ORDERBY_RANGES, tasks:1, time:1, size: 2, [0|1|1] ]
total time: 1,044, record count: 4
restrict的时间/整体时间: 1012/1044
result:
C_CITY     |S_CITY     |D_YEAR     |LO_REVENUE |
- - - - - - - - - - - - - - - - - - - - - - - -
UNITED KI5 |UNITED KI1 |1997       |168840628  |
UNITED KI1 |UNITED KI5 |1997       |140264663  |
UNITED KI1 |UNITED KI1 |1997       |135684305  |
2022-10-20 01:41:29.956 - SQL22: select d_year, c_nation, sum(lo_revenue) - sum(lo_supplycost) as profit from lineorder,dates,customer,supplier,part where lo_orderdate = d_datekey and lo_custkey = c_custkey and lo_suppkey = s_suppkey and lo_partkey = p_partkey and c_region = 'AMERICA' and s_region = 'AMERICA' and (p_mfgr = 'MFGR#1' or p_mfgr = 'MFGR#2') group by d_year, c_nation order by d_year, c_nation; ;
  Status: PASS, Elapsed: 2.833, Affected: 35
  Info: Job[878:RESTRICT, tasks:193, time:2,137, size: 2,882,137, [0|193|2,138] ]
Job[880:DIMENSION_JOIN, tasks:193, time:8, size: 2,882,137, [0|193|8] ]
Job[882:DIMENSION_JOIN, tasks:193, time:3, size: 2,882,137, [0|193|3] ]
Job[884:DIMENSION_JOIN, tasks:193, time:2, size: 2,882,137, [0|193|2] ]
Job[886:DIMENSION_JOIN, tasks:193, time:3, size: 2,882,137, [0|193|2] ]
Job[889:OUTPUT_HASH_GROUP_BY, tasks:6, time:663, size: 210, [0|6|662] ]
Job[891:MERGE_HASH_GROUPBY_PARTITION, tasks:7, time:1, size: 35, [0|7|1] ]
Job[893:PROJECT, tasks:7, time:1, size: 35, [0|7|1] ]
Job[895:PROJECT, tasks:7, time:0, size: 35, [0|7|0] ]
Job[897:RANGE_SORT, tasks:7, time:1, size: 35, [0|7|1] ]
Job[901:PARTITION_TABLET, tasks:7, time:0, size: 35, [0|7|0] ]
Job[903:MERGE_ORDERBY_RANGES, tasks:1, time:0, size: 1, [0|1|0] ]
total time: 2,830, record count: 35
restrict的时间/整体时间: 2137/2830
result:
D_YEAR     |C_NATION      |PROFIT       |
- - - - - - - - - - - - - - - - - - - -
1992       |ARGENTINA     |312585625436 |
1992       |BRAZIL        |312719709853 |
1992       |CANADA        |307040911677 |
2022-10-20 01:41:37.244 - SQL24: select d_year, s_nation, p_category, sum(lo_revenue) - sum(lo_supplycost) as profit from lineorder,dates,customer,supplier,part where lo_orderdate = d_datekey and lo_custkey = c_custkey and lo_suppkey = s_suppkey and lo_partkey = p_partkey and c_region = 'AMERICA'and s_region = 'AMERICA' and (d_year = 1997 or d_year = 1998) and (p_mfgr = 'MFGR#1' or p_mfgr = 'MFGR#2') group by d_year, s_nation, p_category order by d_year, s_nation, p_category; ;
  Status: PASS, Elapsed: 4.462, Affected: 100
  Info: Job[1005:RESTRICT, tasks:193, time:4,155, size: 694,402, [0|193|4,155] ]
Job[1007:DIMENSION_JOIN, tasks:193, time:4, size: 694,402, [0|193|4] ]
Job[1009:DIMENSION_JOIN, tasks:193, time:3, size: 694,402, [0|193|3] ]
Job[1011:DIMENSION_JOIN, tasks:193, time:3, size: 694,402, [0|193|3] ]
Job[1013:DIMENSION_JOIN, tasks:193, time:3, size: 694,402, [0|193|2] ]
Job[1016:OUTPUT_HASH_GROUP_BY, tasks:6, time:272, size: 600, [0|6|271] ]
Job[1018:MERGE_HASH_GROUPBY_PARTITION, tasks:7, time:2, size: 100, [0|7|2] ]
Job[1020:PROJECT, tasks:7, time:0, size: 100, [0|7|0] ]
Job[1022:PROJECT, tasks:7, time:1, size: 100, [0|7|0] ]
Job[1024:RANGE_SORT, tasks:7, time:2, size: 100, [0|7|1] ]
Job[1028:PARTITION_TABLET, tasks:7, time:0, size: 100, [0|7|0] ]
Job[1030:MERGE_ORDERBY_RANGES, tasks:1, time:0, size: 10, [0|1|0] ]
total time: 4,460, record count: 100
restrict的时间/整体时间: 4155/4460
result:
D_YEAR     |S_NATION      |P_CATEGORY |PROFIT      |
- - - - - - - - - - - - - - - - - - - - - - - - - -
1997       |ARGENTINA     |MFGR#11    |31668757023 |
1997       |ARGENTINA     |MFGR#12    |31315629143 |
1997       |ARGENTINA     |MFGR#13    |31899989093 |


我这边主要做了一下内容:

  1. 将数据库执行结果通过Linux脚本下载下来

cat ../conf/ssb_test.sql | ./cplus.sh > ssb30_record_result.txt
  1. 将数据库日志中的 job 信息通过Linux脚本下载下来

./cplus.sh <<EOF
desc history;
EOF
  1. 编写python脚本提取 RESTRICT 时间,并组合前两步骤的结果
a = """
 {具体的 job 信息}
"""
b = """
{具体的 查询结果 信息}
"""
if __name__ == '__main__':
    result_a = []
    # print(a.split("\n\n"))
    for item in a.split("\n\n"):
        result_item = '\nrestrict的时间/整体时间: '
        flag = False
        for item_item in item.split("\n"):
            if "RESTRICT" in item_item:
                flag = True
                result_item += item_item.split("time:")[1].split(", ")[0] + "/"
            elif "total time" in item_item:
                result_item += item_item.split("total time: ")[1].split(", ")[0] + "\n"
        if not flag:
            continue
        result_item = result_item.replace(",", "")
        result_a.append(item + result_item)
    result_a.reverse()
    # for item in result_a:
    #     print(item)
    b_1 = ["\n".join(item.split("\n")[1:6]) for item in b.split("\nSQL")]
    result_b = []
    for item in b_1:
        if "|" in item:
            if "\nSelects" in item:
                result_b.append("result: \n" + "\n".join(item.split("\n")[0:-2]) + "\n\n")
            else:
                result_b.append("result: \n" + item + "\n")
    if len(result_a) != 26 or len(result_b) != 26:
        raise Exception("result'len should =26 and result_a'len should =26")
    result = ["\n".join(item) for item in list(zip(result_a, result_b))]
    result.insert(0, "d")
    result = result[0:-1:2][1:]
    print("\n".join(result))


二、解决线程 bug


我们知道,在 windows 中,通过任务管理器可以看CPU信息,比如下面是我在windows上的CPU信息截图:

334.webp.jpg


现在问题来了,我的数据库系统到底是启用 8 线程好呢?还是 16线程好呢?

答案是 16 线程。以逻辑处理器为准!

数据库原先启用的是8线程,这就是问题所在。这块优化完毕之后,“Star Schema Benchmark 标准测试集优化”基本已终结。


三、测试结果


333.webp.jpg


左边是咱们数据库,右边是 Starrocks 数据库


目录
相关文章
|
2月前
|
存储 人工智能 NoSQL
AI大模型应用实践 八:如何通过RAG数据库实现大模型的私有化定制与优化
RAG技术通过融合外部知识库与大模型,实现知识动态更新与私有化定制,解决大模型知识固化、幻觉及数据安全难题。本文详解RAG原理、数据库选型(向量库、图库、知识图谱、混合架构)及应用场景,助力企业高效构建安全、可解释的智能系统。
|
6月前
|
关系型数据库 MySQL 数据库连接
Django数据库配置避坑指南:从初始化到生产环境的实战优化
本文介绍了Django数据库配置与初始化实战,涵盖MySQL等主流数据库的配置方法及常见问题处理。内容包括数据库连接设置、驱动安装、配置检查、数据表生成、初始数据导入导出,并提供真实项目部署场景的操作步骤与示例代码,适用于开发、测试及生产环境搭建。
270 1
|
2月前
|
SQL 存储 监控
SQL日志优化策略:提升数据库日志记录效率
通过以上方法结合起来运行调整方案, 可以显著地提升SQL环境下面向各种搜索引擎服务平台所需要满足标准条件下之数据库登记作业流程综合表现; 同时还能确保系统稳健运行并满越用户体验预期目标.
204 6
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
如何让AI更“聪明”?VLM模型的优化策略与测试方法全解析​
本文系统解析视觉语言模型(VLM)的核心机制、推理优化、评测方法与挑战。涵盖多模态对齐、KV Cache优化、性能测试及主流基准,助你全面掌握VLM技术前沿。建议点赞收藏,深入学习。
792 8
|
3月前
|
缓存 Java 应用服务中间件
Spring Boot配置优化:Tomcat+数据库+缓存+日志,全场景教程
本文详解Spring Boot十大核心配置优化技巧,涵盖Tomcat连接池、数据库连接池、Jackson时区、日志管理、缓存策略、异步线程池等关键配置,结合代码示例与通俗解释,助你轻松掌握高并发场景下的性能调优方法,适用于实际项目落地。
589 5
|
5月前
|
机器学习/深度学习 SQL 运维
数据库出问题还靠猜?教你一招用机器学习优化运维,稳得一批!
数据库出问题还靠猜?教你一招用机器学习优化运维,稳得一批!
173 4
|
8月前
|
SQL 人工智能 数据可视化
16.1k star! 只需要DDL就能一键生成数据库关系图!开源神器ChartDB让你的数据结构"看得见"
ChartDB是一款开源的数据库可视化神器,通过一句智能查询就能自动生成专业的数据库关系图。无需安装客户端、不用暴露数据库密码,打开网页就能完成从数据建模到迁移的全流程操作,堪称开发者的"数据库透视镜"。
1732 67
|
8月前
|
JSON 测试技术 API
优化你的 REST Assured 测试:设置默认主机与端口、GET 请求与断言
REST Assured 是一个强大的 Java 库,用于简化 RESTful API 测试。本文详解了其核心功能:设置默认主机和端口以减少代码重复、发起 GET 请求并验证响应结果,以及通过断言确保接口行为符合预期。同时推荐 Apipost 工具,助力开发者提升 API 测试效率,实现更高效的接口管理与团队协作。掌握这些技巧,可显著优化测试流程与代码质量。
|
9月前
|
缓存 JavaScript 中间件
如何测试中间件优化后的 Pinia 状态管理?
如何测试中间件优化后的 Pinia 状态管理?
252 64