Seaborn数据可视化(一)

简介: 本文其实属于:Python的进阶之道【AIoT阶段一】的一部分内容,本篇把这部分内容单独截取出来,方便大家的观看,本文介绍Seaborn数据可视化,读本文之前,如果没有 Matplotlib基础建议先看博客:Matplotlib数据可视化入门,Matplotlib数据可视化高级,Matplotlib数据可视化进阶(进阶中有Seaborn讲解,这里单独截出来)。

前言

本文其实属于:Python的进阶之道【AIoT阶段一】的一部分内容,本篇把这部分内容单独截取出来,方便大家的观看,本文介绍Seaborn数据可视化,读本文之前,如果没有 Matplotlib基础建议先看博客:Matplotlib数据可视化入门Matplotlib数据可视化高级,Matplotlib数据可视化进阶(进阶中有Seaborn讲解,这里单独截出来)。


🌟 学习本文之前,需要先自修:NumPy从入门到进阶,pandas从入门到进阶本文中很多的操作在 NumPy从入门到进阶 ,pandas从入门到进阶二文中有详细的介绍,包含一些软件以及扩展库,图片的安装和下载流程,本文会直接进行使用。


下载 Matplotlib 见博客:matplotlib的安装教程以及简单调用,这里不再赘述

Seaborn是基于matplotlib的图形可视化python包。它提供了一种高度交互式界面,便于用户能够做出各种有吸引力的统计图表。


Seaborn是在matplotlib的基础上进行了更高级的API封装,从而使得作图更加容易,在大多数情况下使用seaborn能做出很具有吸引力的图,而使用matplotlib就能制作具有更多特色的图。应该把Seaborn视 为matplotlib的补充,而不是替代物。


1.安装

如果你读过文章:matplotlib的安装教程以及简单调用,那么你只需要在命令行模式中输入:pip install seaborn即可进行安装,否则你也可以直接输入:pip install seaborn -i https://pypi.tuna.tsinghua.edu.cn/simple


进入命令行模式:Windows系统:按下键盘上的 Windows+R,输入cmd 后即可进入


如果你读过文章:最详细的Anaconda Installers 的安装【numpy,jupyter】(图+文),那么你无序再安装Seaborn,安装Anaconda 的时候已经安装好了Seaborn

image.png

出现上图所示就是已经安装过的意思,我们可以打开 jupyter 运行如下代码,看是否报错:

import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

不报错即为安装成功,那么接下来,就让我来介绍 seaborn


2.快速上手

2.1 模式设置

import seaborn as sns 
sns.set(style = 'darkgrid',context = 'talk',font = 'STKaiti')

style设置,修改主题风格,属性如下:

style 效果
darkgrid 黑色网格(默认)
whitegrid 白色网格
dark 黑色背景
white 白色背景
ticks 四周有刻度线的白背景

context设置,修改大小,属性如下:

context 效果
paper 越来越大越来越粗
notebook(默认) 越来越大越来越粗
talk 越来越大越来越粗
poster 越来越大越来越粗

2.2 线形图

import seaborn as sns
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
sns.set(style = 'dark',context = 'poster',font = 'STKaiti') # 设置样式
plt.figure(figsize = (9, 6))
x = np.linspace(0, 2 * np.pi, 20)
y = np.sin(x)
sns.lineplot(x = x, y = y, color = 'green', ls = '--')
sns.lineplot(x = x, y = np.cos(x), color = 'red',ls = '-.')

10.png


3.各种图形绘制

首先我们需要下载几个 csv 文件:

链接: https://pan.baidu.com/s/12CkTweXPT-El4z2M93HltQ?pwd=vaks

提取码: vaks

下载完成之后,把该文件和我们的代码放到同一个文件夹下,这一操作我们在之前的博客中已经反复说到,这里就不再进行演示


3.1 调色板

参数palette(调色板),用于调整颜色,系统默认提供了六种选择:deep,muted,bright,pastel,dark,colorblind

参数palette调色板,可以有更多的颜色选择,Matplotlib为我们提供了多达178种,这足够绘图用,可以通过代码print(plt.colormaps())查看选择

import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
print(plt.colormaps())

image.png

3.2 线形图

import seaborn as sns
import matplotlib.pyplot as plt
import pandas as pd
# 设置样式
sns.set(style = 'dark', context = 'notebook', font = 'STKaiti')
plt.figure(figsize = (9, 6))
# fmri 这一核磁共振数据
fmri = pd.read_csv('./fmri.csv') 
ax = sns.lineplot(x = 'timepoint',y = 'signal',
                  hue = 'event',     # 根据 event 进行分类绘制
                  style = 'event',   # 根据 event 属性分类指定样式
                  # 如图自动分配成了实现和虚线,●和×
                  data = fmri,
                  palette = 'deep',  # 画板、颜色
                  markers = True,
                  markersize = 10)
plt.xlabel('时间节点',fontsize = 30)

11.png

3.3 散点图

import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
data = pd.read_csv('./tips.csv') # 小费
plt.figure(figsize = (9, 6))
sns.set(style = 'darkgrid', context = 'talk')
# 散点图
fig = sns.scatterplot(x = 'total_bill', y = 'tip',
hue = 'time', data = data,
palette = 'autumn', s = 100)

12.png

3.4 柱状图

import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
plt.figure(figsize = (9, 6))
sns.set(style = 'whitegrid')
tips = pd.read_csv('./tips.csv') # 小费
ax = sns.barplot(x = "day", y = "total_bill",
                 data = tips,hue = 'sex',
                 palette = 'colorblind',
                 capsize = 0.2)

13.png






目录
相关文章
|
25天前
|
机器学习/深度学习 数据可视化 搜索推荐
基于python的汽车数据可视化、推荐及预测系统
本研究围绕汽车数据可视化、推荐及预测系统展开,结合大数据与人工智能技术,旨在提升用户体验与市场竞争力。内容涵盖研究背景、意义、相关技术如 Python、ECharts、协同过滤及随机森林回归等,探讨如何挖掘汽车数据价值,实现个性化推荐与智能预测,为汽车行业智能化发展提供支持。
|
2天前
|
数据采集 Web App开发 自然语言处理
新闻热点一目了然:Python爬虫数据可视化
新闻热点一目了然:Python爬虫数据可视化
|
14天前
|
数据采集 数据可视化 关系型数据库
基于python大数据的电影数据可视化分析系统
电影分析与可视化平台顺应电影产业数字化趋势,整合大数据处理、人工智能与Web技术,实现电影数据的采集、分析与可视化展示。平台支持票房、评分、观众行为等多维度分析,助力行业洞察与决策,同时提供互动界面,增强观众对电影文化的理解。技术上依托Python、MySQL、Flask、HTML等构建,融合数据采集与AI分析,提升电影行业的数据应用能力。
|
29天前
|
数据采集 搜索推荐 数据可视化
基于python大数据的商品数据可视化及推荐系统
本系统基于Python、Django与ECharts,构建大数据商品可视化及推荐平台。通过爬虫获取商品数据,利用可视化技术呈现销售趋势与用户行为,结合机器学习实现个性化推荐,助力电商精准营销与用户体验提升。
|
23天前
|
数据可视化 大数据 数据挖掘
基于python大数据的招聘数据可视化分析系统
本系统基于Python开发,整合多渠道招聘数据,利用数据分析与可视化技术,助力企业高效决策。核心功能包括数据采集、智能分析、可视化展示及权限管理,提升招聘效率与人才管理水平,推动人力资源管理数字化转型。
|
2月前
|
搜索推荐 算法 数据可视化
基于python大数据的招聘数据可视化及推荐系统
本研究聚焦于基于协同过滤的就业推荐系统设计与实现。随着就业压力增大和信息技术发展,传统求职方式面临挑战。通过分析用户行为与职位特征,协同过滤技术可实现个性化职位推荐,提升求职与招聘效率。研究涵盖系统架构、数据采集、算法实现及可视化展示,旨在优化就业匹配,促进人才与岗位精准对接,助力就业市场智能化发展。
|
4月前
|
数据可视化 算法 数据挖掘
Python 3D数据可视化:7个实用案例助你快速上手
本文介绍了基于 Python Matplotlib 库的七种三维数据可视化技术,涵盖线性绘图、散点图、曲面图、线框图、等高线图、三角剖分及莫比乌斯带建模。通过具体代码示例和输出结果,展示了如何配置三维投影环境并实现复杂数据的空间表示。这些方法广泛应用于科学计算、数据分析与工程领域,帮助揭示多维数据中的空间关系与规律,为深入分析提供技术支持。
120 0
Python 3D数据可视化:7个实用案例助你快速上手
|
5月前
|
人工智能 数据可视化 数据挖掘
如何使用Python进行数据可视化
Python是一种强大的编程语言,广泛应用于数据分析与可视化。常见的可视化库有Matplotlib、Seaborn和Plotly等。数据可视化通常包括以下步骤:准备数据(如列表或从文件读取)、选择合适的工具、绘制图表、优化样式(如标题和标签)以及保存或分享结果。例如,使用Matplotlib可通过简单代码绘制线图并添加标题和轴标签。实际应用中,可通过调整颜色、样式等进一步优化图表,甚至使用交互式工具提升效果。总之,Python的丰富工具为数据可视化提供了强大支持。
166 5
|
10月前
|
数据可视化 数据挖掘 DataX
Python 数据可视化的完整指南
Python 数据可视化在数据分析和科学研究中至关重要,它能帮助我们理解数据、发现规律并以直观方式呈现复杂信息。Python 提供了丰富的可视化库,如 Matplotlib、Seaborn、Plotly 和 Pandas 的绘图功能,使得图表生成简单高效。本文通过具体代码示例和案例,介绍了折线图、柱状图、饼图、散点图、箱形图、热力图和小提琴图等常用图表类型,并讲解了自定义样式和高级技巧,帮助读者更好地掌握 Python 数据可视化工具的应用。
567 3
|
10月前
|
数据可视化 DataX Python
Seaborn 教程-绘图函数
Seaborn 教程-绘图函数
304 8

推荐镜像

更多