相关文章
|
24天前
|
机器学习/深度学习 人工智能 前端开发
通义DeepResearch全面开源!同步分享可落地的高阶Agent构建方法论
通义研究团队开源发布通义 DeepResearch —— 首个在性能上可与 OpenAI DeepResearch 相媲美、并在多项权威基准测试中取得领先表现的全开源 Web Agent。
1597 89
|
5月前
|
人工智能 自然语言处理 数据挖掘
云上玩转Qwen3系列之三:PAI-LangStudio x Hologres构建ChatBI数据分析Agent应用
PAI-LangStudio 和 Qwen3 构建基于 MCP 协议的 Hologres ChatBI 智能 Agent 应用,通过将 Agent、MCP Server 等技术和阿里最新的推理模型 Qwen3 编排在一个应用流中,为大模型提供了 MCP+OLAP 的智能数据分析能力,使用自然语言即可实现 OLAP 数据分析的查询效果,减少了幻觉。开发者可以基于该模板进行灵活扩展和二次开发,以满足特定场景的需求。
|
4月前
|
人工智能 搜索推荐 测试技术
通义灵码 Agent+MCP:打造自动化菜品推荐平台,从需求到部署实现全流程创新
通过通义灵码编程智能体模式和 MCP 的集成,开发者可以高效构建在线菜品推荐网站。智能体模式大幅提升了开发效率,MCP 服务则为功能扩展提供了无限可能。
|
9月前
|
Web App开发 存储 传感器
大模型编程(4)- 大白话 agent
本文介绍了大模型中的`agent`概念及其作用。通过类比日常使用的浏览器作为访问网页的代理,解释了`agent`在大模型中的角色:简化复杂操作、增强功能性。文中提到,即使是简单的功能实现(如查询天气),也可以视为`agent`的应用。进一步探讨了一个典型的智能家庭助理`agent`的工作流程,包括感知环境、思考决策和执行行动三个主要阶段。这不仅帮助理解`agent`的功能,也为开发更复杂的`agent`提供了参考。
230 3
|
6月前
|
自然语言处理 安全 数据挖掘
Hologres+函数计算+Qwen3,对接MCP构建企业级数据分析 Agent
本文介绍了通过阿里云Hologres、函数计算FC和通义千问Qwen3构建企业级数据分析Agent的解决方案。大模型在数据分析中潜力巨大,但面临实时数据接入与跨系统整合等挑战。MCP(模型上下文协议)提供标准化接口,实现AI模型与外部资源解耦。方案利用SSE模式连接,具备高实时性、良好解耦性和轻量级特性。Hologres作为高性能实时数仓,支持多源数据毫秒级接入与分析;函数计算FC以Serverless模式部署,弹性扩缩降低成本;Qwen3则具备强大的推理与多语言能力。用户可通过ModelScope的MCP Playground快速体验,结合TPC-H样例数据完成复杂查询任务。
|
7月前
|
人工智能 自然语言处理 前端开发
从理论到实践:使用JAVA实现RAG、Agent、微调等六种常见大模型定制策略
大语言模型(LLM)在过去几年中彻底改变了自然语言处理领域,展现了在理解和生成类人文本方面的卓越能力。然而,通用LLM的开箱即用性能并不总能满足特定的业务需求或领域要求。为了将LLM更好地应用于实际场景,开发出了多种LLM定制策略。本文将深入探讨RAG(Retrieval Augmented Generation)、Agent、微调(Fine-Tuning)等六种常见的大模型定制策略,并使用JAVA进行demo处理,以期为AI资深架构师提供实践指导。
828 73
|
5月前
用Qwen3搭建MCP Agent,有机会瓜分1亿tokens
通义实验室联合阿里云百炼发起有奖征文活动!使用Qwen3+MCP Sever搭建Agent,即有机会瓜分1亿Tokens大奖与限定周边。活动时间:5月6日-5月30日征稿,投稿需包含技术文档、故事分享、演示视频及知识产权承诺书。突出技术创新与场景应用,传播潜力更大!扫码报名并分享至社交平台还有额外抽奖机会,赢定制好礼!
349 11
|
4月前
|
机器学习/深度学习 自然语言处理 算法
万字长文详解|DLRover LLM Agent:大模型驱动的高效集群资源调优
本文介绍了DLRover LLM Agent,展示了基于 LLM 上下文学习能力的优化算法设计理念以及在DLRover 资源调优上的应用方法和效果。
|
7月前
|
人工智能 自然语言处理 Serverless
AI 大模型+智能客服:自动识别客户意图,实现高效沟通
本方案旨在介绍如何部署 AI 大模型实现对客户对话的自动化分析,支持多人、多语言识别,精准识别客户意图、评估服务互动质量,实现数据驱动决策。
770 14
|
6月前
|
自然语言处理 搜索推荐 机器人
合力亿捷云客服系统:2025年大模型如何重塑全渠道对话体验
2025年,以DeepSeek等大模型为核心的智能客服系统,突破传统效率瓶颈,通过全渠道整合、多模态交互、个性化服务与情感智能,重构企业客户互动模式。从机械应答到认知共情,从单一文本到多维交互,大模型赋能客服系统成为企业价值创造的战略资产,推动客户服务迈向智能化新纪元。
258 2

热门文章

最新文章

相关商品

相关课程

更多

相关电子书

更多

相关实验场景

更多
下一篇
日志分析软件