当系统出现大量或者重大的错误却不被人感知,将会对业务产生影响,从而导致资产损失。当竞争对手实施了新战术,却无法及时感知,跟不上竞争对手的节奏,总是追着对方尾巴走。当要做决策的时候,海量的业务数据增长却无法实时看到聚合结果,决策总是凭借过往经验或者过时的数据分析之上。
本文所涉及的实验体验的就是怎么建设AI的外脑?向量数据库的核心价值:AI外脑
本文介绍如何使用函数计算 GPU 实例闲置模式低成本、快速的部署 Google Gemma 模型服务。
本文主要学习 RocketMQ 的一致性特性,一致性对于交易、金融都是刚需。从大规模复杂业务出发,学习 RocketMQ 的 SQL 订阅、定时消息等特性。再从高可用的角度来看,这里更多的是大型公司对于高阶可用性的要求,如同城容灾、异地多活等。
MSE(微服务引擎)在微服务全链路灰度场景下提供了一套成熟的功能,支持内容规则和百分比规则的灰度路由策略。
本文介绍了Higress,一个支持基于WebAssembly (WASM) 的边缘计算网关,它允许用户使用Go、C++或Rust编写插件来扩展其功能。文章特别讨论了如何利用Redis插件实现限流、缓存和会话管理等高级功能。
PolarDB-X 2.0(以下简称PolarDB-X)与DRDS(DRDS也称为PolarDB-X 1.0)都是阿里云上的分布式数据库产品。看起来她们都是Share-Nothing的架构,用水平扩展来解决单机数据库瓶颈问题。很多同学因此会有疑惑,她们俩到底有什么样的区别?