本文会从浏览器插件应用场景切入,穿插插件基础能力和常见入口的介绍,核心回答如下三个问题:插件可以被使用在哪些场景?不同的使用场景我们的主要代码实现思路是怎样的?我们可以从哪些角度入手自己开发一款可以落地实用的浏览器插件?
ARMS RUM 是阿里云应用实时监控服务(ARMS)下的用户体验监控(RUM)产品,覆盖 Web/H5、各类平台小程序、Android、iOS、Flutter、ReactNative、Windows、macOS 等平台框架。接入 SDK 后会主动采集端侧页面性能、资源加载、API 调用、异常崩溃、卡顿、用户操作、系统信息等数据,还支持事件、日志、异常等数据按需自定义上报以满足业务数据分析需求,提供全面的性能分析、异常分析、产品分析、会话分析能力,帮助快速跟踪定位问题原因,提升产品用户使用体验。
本文将演示如何使用事件总线(EventBridge),向量检索服务(DashVector),函数计算(FunctionCompute)结合灵积模型服务[1]上的 Embedding API[2],来从 0 到 1 构建基于文本索引的构建+向量检索基础上的语义搜索能力。具体来说,我们将基于 OSS 文本文档动态插入数据,进行实时的文本语义搜索,查询最相似的相关内容。
本文介绍了ECS和OSS的操作流程,分为两大部分。第一部分详细讲解了ECS的登录、密码重置、安全组设置及OSSUTIL工具的安装与配置,通过实验创建并管理存储桶,上传下载文件,确保资源及时释放。第二部分则聚焦于OSSFS工具的应用,演示如何将对象存储挂载为磁盘,进行大文件加载与模型训练,强调环境搭建(如Conda环境)及依赖安装步骤,确保实验结束后正确清理AccessKey和相关资源。整个过程注重操作细节与安全性,帮助用户高效利用云资源完成实验任务。
SQL 作为 SLS 基础功能,每天承载了用户大量日志数据的分析请求,既有小数据量的快速查询(如告警、即席查询等);也有上万亿数据规模的报表级分析。SLS 作为 Serverless 服务,除了要满足不同用户的各类需求,还要兼顾性能、隔离性、稳定性等要求。过去一年多的时间,SLS SQL 团队做了大量的工作,对 SQL 引擎进行了全新升级,SQL 的执行性能、隔离性等方面都有了大幅的提升。
目前阿里云 ARMS 已经基于 LLM 大模型实现了单链路智能诊断,综合调用链、方法栈、异常堆栈、SQL、指标等多模态数据,结合链路诊断领域专家经验,有效识别单次请求的错慢根因,并给出相应的优化建议。