官方博客-第51页-阿里云开发者社区

  • 2024-05-15
    998

    链路追踪(Tracing)其实很简单——链路功能进阶指南

    经过前面两章的学习,小玉已经熟练掌握分布式链路追踪的基础用法,比如回溯链路请求轨迹,定位耗时瓶颈点;配置核心接口黄金三指标告警,第一时间发现流量异常;大促前梳理应用上下游关键依赖,联系相关方协同备战等等。随...

    998
  • 2024-05-15
    317

    PolarDB-X SQL限流

    本文首先介绍了SQL限流的使用场景,它可通过限制边缘业务查询,留出资源来为核心业务保驾护航。接着是功能简介,PolarDB-X结合自身云原生分布式的特点,提供了具有简洁易用的交互接口、多样的限流策略、平均复杂度O(1)、节点级限流实例级监控的SQL限流能力。

    317
  • 2024-05-15
    590

    基于业务的告警管理最佳实践

    本文主要介绍了SLS告警管理中心的业务概念和功能。

    590
  • 2024-05-15
    1049

    基于阿里云RDS PostgreSQL打造实时用户画像推荐系统(varbitx))

    用户画像在市场营销的应用重建中非常常见,已经不是什么新鲜的东西,比较流行的解决方案是给用户贴标签,根据标签的组合,圈出需要的用户。通常画像系统会用到宽表,以及分布式的系统。宽表的作用是存储标签,例如每列代表一个标签。但实际上这种设计不一定是最优或唯一的设计,本文将以PostgreSQL数据库为基础,给大家讲解一下更加另类的设计思路,并且看看效率如何。

    1,049
  • 2024-05-15
    321

    实践教程之将PolarDB-X与大数据等系统互通

    PolarDB-X 为了方便用户体验,提供了免费的实验环境,您可以在实验环境里体验 PolarDB-X 的安装部署和各种内核特性。除了免费的实验,PolarDB-X 也提供免费的视频课程,手把手教你玩转 PolarDB-X 分布式数据库。

    321
  • 2024-05-15
    505

    长路漫漫, 从Blink-tree 到Bw-tree (上)

    在前面的文章 路在脚下, 从BTree 到Polar Index中提到, 我们已经将InnoDB 里面Btree 替换成Blink Tree, 高并发压力下, 在标准的TPCC 场景中最高能够有239%的性能提升, 然后我们对InnoDB 的file space模块也进行了优化, 在分配新pag...

    505
  • 2024-05-15
    521

    企业级事务处理与分析处理一体化方案

    本文为您介绍基于专有云敏捷版数据库场景DBStack搭建企业级事务处理与分析处理一体化方案。

    521
  • 2024-05-15
    607

    DNS解析异常监控

    本文将介绍如何使用“网络分析与监控”产品的“站点监控”功能,监控国内各省份三大运营商的用户和云上的应用服务访问您的域名能否正常解析。

  • 2024-05-15
    480

    PolarDB-X用15M内存跑1G的TPCH

    在数据时代,过多耗内存的大查询都有可能压垮整个集群,所以其内存管理模块在整个系统中扮演着非常重要的角色。而PolarDB-X 作为一款分布式数据库,其面对的数据可能从TB到GB字节不等,同时又要支持TP和AP Workload,要是在计算过程中内存使用不当,不仅会造成TP和AP相互影响,严重拖慢响应时间,甚至会出现内存雪崩、OOM问题,导致数据库服务不可用。CPU和MEMORY相对于网络带宽比较昂贵,所以PolarDB-X 代价模型中,一般不会将涉及到大量数据又比较耗内存的计算下推到存储DN,DN层一般不会有比较耗内存的计算。这样还有一个好处,当查询性能低的时候,无状态的CN节点做弹性扩容代价相对于DN也低。鉴于此,所以本文主要对PolarDB-X计算层的内存管理进行分析,这有助于大家有PolarDB-X有更深入的理解。

    480
  • 1
    ...
    50
    51
    52
    ...
    59
    到第