Knative Serving 是一款基于 K8s 的 Serverless 开源平台,用于构建和管理现代化、可拓展、流量驱动、无服务器的应用程序。本文重点关注 Knative 网络层能力的实现。
本文将AI项目与Serverless架构进行结合,在Serverless架构下用20行Python代码搞定图像分类和预测。
阿里云OOS提供了定时升级Redis实例临时带宽的功能,以应对数据驱动业务中的流量高峰。这个功能允许用户根据预测的业务负载,在特定日期和时间自动增加Redis实例的带宽,确保服务性能和稳定性。在高流量事件结束后,带宽会自动恢复到原设置,节省成本。 此功能适用于电商平台促销、大型游戏更新等场景,确保在流量高峰期间的系统稳定运行。
目前 MSE 服务治理的 离群实例摘除、标签路由、金丝雀发布、全链路灰度等功能已经使用该路由方案,经过我们的压测与演练,在CPU、RT等方面均有不少提升,以 Demo 应用为例 (服务调用的跳数为2,下游30节点,每个节点1c2g) 其中调用 RT 提升约 6.7%。
本文介绍了从零开始搭建自己的NextCloud个人云盘,包括场景介绍、目标读者、环境准备、操作步骤和方案验证5大方面。
人工智能领域中的验证码识别与 Serverless 架构碰撞会有哪些火花呢?本文将会通过 Serverless 架构,通过卷积神经网络(CNN)算法,实现一个验证码识别功能。
本文从常见的微服务治理场景出发,从流量路由这个场景入手。先是根据流量路由的实践设计流量路由的 Spec,同时在 Spring Cloud Alibaba 中实践遵循 OpenSergo 标准的流量路由能力。
我一直都想要有一个漫画版的头像,奈何手太笨,用了很多软件 “捏不出来”,所以就在想着,是否可以基于 AI 实现这样一个功能,并部署到 Serverless 架构上让更多人来尝试使用呢。