本文主要介绍ARMS 错/慢 Trace 分析功能基本原理; 该功能能够覆盖哪些异常 Trace 根因; 最后会介绍一些最佳实践案例。
阿里云可观测监控 Prometheus 版提供高性能、高可用、全托管的监控服务,对接开源生态,支持 Kubernetes、ECS 等场景,解决了自建 Prometheus+Thanos 高成本、运维复杂的问题。本文讨论在各个典型场景下的迁移方案。
本文带大家了解一下如何使用阿里云Serverless计算产品函数计算构建生产级别的LLM Chat应用。该最佳实践会指导大家基于开源WebChat组件LobeChat和阿里云函数计算(FC)构建企业生产级别LLM Chat应用。实现同一个WebChat中既可以支持自定义的Agent,也支持基于Ollama部署的开源模型场景。
本文将演示如何使用事件总线(EventBridge),向量检索服务(DashVector),函数计算(FunctionCompute)结合灵积模型服务[1]上的 Embedding API[2],来从 0 到 1 构建基于文本索引的构建+向量检索基础上的语义搜索能力。具体来说,我们将基于 OSS 文本文档动态插入数据,进行实时的文本语义搜索,查询最相似的相关内容。
SQL 作为 SLS 基础功能,每天承载了用户大量日志数据的分析请求,既有小数据量的快速查询(如告警、即席查询等);也有上万亿数据规模的报表级分析。SLS 作为 Serverless 服务,除了要满足不同用户的各类需求,还要兼顾性能、隔离性、稳定性等要求。过去一年多的时间,SLS SQL 团队做了大量的工作,对 SQL 引擎进行了全新升级,SQL 的执行性能、隔离性等方面都有了大幅的提升。
该文档详细介绍了阿里云一键部署和手动部署多媒体数据存储与分发方案的步骤。一键部署通过资源编排服务(ROS)实现自动化,涵盖注册账号、开通服务、创建OSS Bucket、配置CDN加速及绑定IMM等功能,简化了复杂操作。手动部署则更细致地展示了每个配置环节,包括网络规划、资源创建、域名绑定、CDN配置、证书加密及最终的验证与清理,确保用户对整个流程有清晰理解。两种方式均以OSS为核心,支持数据上传、转码处理和加速分发,保障高效稳定的用户体验。
目前阿里云 ARMS 已经基于 LLM 大模型实现了单链路智能诊断,综合调用链、方法栈、异常堆栈、SQL、指标等多模态数据,结合链路诊断领域专家经验,有效识别单次请求的错慢根因,并给出相应的优化建议。
政采云基础架构团队技术专家朱海峰介绍了业务网关项目的背景和解决方案。