文章主要讲述了阿里云 ARMS 团队与程序语言与编译器团队合作研发的面向OpenTelemetry的Golang应用无侵入插桩技术解决方案,旨在解决Golang应用监控的挑战。
近年来,AI 技术发展迅猛,企业纷纷寻求将 AI 能力转化为商业价值,然而,在部署 AI 模型推理服务时,却遭遇成本高昂、弹性不足及运维复杂等挑战。本文将探讨云原生 Serverless GPU 如何从根本上解决这些问题,以实现 AI 技术的高效落地。
阿里云 ARMS 用户体验监控(RUM)推出了针对原生鸿蒙应用的 SDK。SDK 使用 ArkTS 语言开发,支持页面采集、资源加载采集、异常采集及自定义采集等功能,能够全面监控鸿蒙应用的表现。集成简单,只需几步即可将 SDK 接入项目中,为鸿蒙应用的开发者提供了强有力的支持。
想象一下,只需简单几步操作,就能生成逼真的语音效果,无论是为客户服务还是为游戏角色配音,都能轻松实现。GPT-Sovits 模型,其高效的语音生成能力为实现自然、流畅的语音交互提供了强有力的技术支持。本文将详细介绍如何利用函数计算平台部署 GPT-Sovits 模型,以构建一个高效、可扩展的 AI 语音交互系统。通过这一部署方案,开发者和企业能够快速集成语音合成功能,实现从文本到语音的无缝转换,进而推动智能语音应用的创新和发展。
XXL-JOB 是一个开源的分布式任务调度平台,开箱即用、简单易上手,得到了很多开发者的喜爱。和其他中间件开源项目一样,当开发者把开源项目部署到公共云,应用到企业级场景中时,就会在稳定性、性能、安全、其他云产品间集成体验上提出更高的要求。基于此背景,阿里云微服务引擎 MSE 基于自研的分布式任务调度平台 SchedulerX,通过兼容 XXL-JOB 客户端的通信协议,在开源 XXL-JOB 版本的基础上,提升了稳定性、安全、性能、可观测等能力,满足企业客户的需求。此外,为方便测试,提供了一个月 400 元额度的免费试用和预付费首购 5 折、续费 6.5 折起的优惠。
AI 应用开发中,总有一些让人头疼的问题:敏感信息(比如 API-KEY)怎么安全存储?模型参数需要频繁调整怎么办?Prompt 模板改来改去,每次都得重启服务,太麻烦了!别急,今天我们就来聊聊如何用 Nacos 解决这些问题。
本文来学习一个典型的物联网技术架构,以及在这个技术架构里面,消息队列所发挥的作用。在物联网的场景里面,对消息技术的要求和面向服务端应用的消息技术有什么区别?学习 RocketMQ 5.0 的子产品 MQTT,是如何解决这些物联网技术难题的。
MSE(微服务引擎)在微服务全链路灰度场景下提供了一套成熟的功能,支持内容规则和百分比规则的灰度路由策略。
微服务架构下,有一些需求开发涉及到微服务调用链路上的多个微服务同时改动。通常每个微服务都会有灰度环境或分组来接受灰度流量。我们希望进入上游灰度环境的流量也能进入下游灰度的环境中,确保1个请求始终在灰度环境中传递。即使这个调用链路上有一些微服务应用不存在灰度环境,那么这些微服务应用在请求下游应用的时候依然能够回到下游应用的灰度环境中。我们通过 MSE 提供的全链路灰度能力,可以在不需要修改任何业务代码的情况下,轻松实现上述所说的全链路灰度能力。