阿里云云原生数据仓库AnalyticDB MySQL(ADB-M)与被OpenAI收购的实时分析数据库Rockset对比,两者在架构设计上有诸多相似点,例如存算分离、实时写入等,但ADB-M在多个方面展现出了更为成熟和先进的特性。ADB-M支持更丰富的弹性能力、强一致实时数据读写、全面的索引类型、高吞吐写入、完备的DML和Online DDL操作、智能的数据生命周期管理。在向量检索与分析上,ADB-M提供更高检索精度。ADB-M设计原理包括分布式表、基于Raft协议的同步层、支持DML和DDL的引擎层、高性能低成本的持久化层,这些共同确保了ADB-M在AI时代作为实时数据仓库的高性能与高性价比
夏日炎炎,别让高温打败你的创意,立即体验 ComfyUI 自制冰冻滤镜!无需繁琐的后期技巧,三步开启一段清凉无比的视觉探险。参与实验并上传作品即可获得运动无线蓝牙耳机,限量 800 个,先到先得!
复杂的运行环境、巨大的部署量和高速发展业务迭代对 Agent 的软件工程质量带来了巨大挑战。基于阿里云可观测团队多年的开发和运维经验,本文将分享如何构建和执行可靠性工程策略。
本文为数据库「拥抱Data+AI」系列连载第1篇,该系列是阿里云瑶池数据库面向各行业Data+AI应用场景,基于真实客户案例&最佳实践,展示Data+AI行业解决方案的连载文章。本篇内容针对电商行业痛点,将深入探讨如何利用数据与AI技术以及数据分析方法论,为电商行业注入新的活力与效能。
本文介绍了对象存储(OSS)在AI业务中的应用与实践。内容涵盖四个方面:1) 对象存储作为AI数据基石,因其低成本和高弹性成为云上数据存储首选;2) AI场景下的对象存储实践方案,包括数据获取、预处理、训练及推理阶段的具体使用方法;3) 国内主要区域的默认吞吐量提升至100Gbps,优化了大数据量下的带宽需求;4) 常用工具介绍,如OSSutil、ossfs、Python SDK等,帮助用户高效管理数据。重点讲解了OSS在AI训练和推理中的性能优化措施,以及不同工具的特点和应用场景。
全球化是对技术架构的终极挑战,面临的不仅仅是技术的问题,而是包含了经济、文化等多因素差异的用户关系问题。积极借助遍布全球的云计算基础设施和云原生的架构设计原则,将能更加高效的构建高可用的全球化技术架构,支持全球业务的持续增长。
网络监控与分析在保证网络可靠性、优化用户体验和提升运营效率方面发挥着不可或缺的作用,对于出海企业应对复杂的网络环境和满足用户需求具有重要意义,为出海企业顺利承接泼天流量保驾护航。