Dataphin 是阿里巴巴旗下的一个智能数据建设与治理平台,旨在帮助企业构建高效、可靠、安全的数据资产。在V4.2版本中,Dataphin敏捷版上线助力企业打造轻量版数据中台,打通数据资产管理和消费,陪伴企业迈入数据高价值应用新阶段。
阿里云云原生数据仓库AnalyticDB MySQL(ADB-M)与被OpenAI收购的实时分析数据库Rockset对比,两者在架构设计上有诸多相似点,例如存算分离、实时写入等,但ADB-M在多个方面展现出了更为成熟和先进的特性。ADB-M支持更丰富的弹性能力、强一致实时数据读写、全面的索引类型、高吞吐写入、完备的DML和Online DDL操作、智能的数据生命周期管理。在向量检索与分析上,ADB-M提供更高检索精度。ADB-M设计原理包括分布式表、基于Raft协议的同步层、支持DML和DDL的引擎层、高性能低成本的持久化层,这些共同确保了ADB-M在AI时代作为实时数据仓库的高性能与高性价比
本文从官方的角度逐条解析PolarDB-X在TPC-H列存执行计划的设计要点。这些要点不仅包含了各项优化的原理,还提供了相关的证明与代码实现,希望帮助读者更深入地理解PolarDB-X的列存优化器。
程序语言与编译器团队和阿里云可观测团队开源了遵循 Opentelemetry 规范的 Golang Agent 0.1.0-RC 版本,希望能通过编译期自动插桩的手段实现无侵入式的 Golang 应用观测。
文章主要讲述了阿里云 ARMS 团队与程序语言与编译器团队合作研发的面向OpenTelemetry的Golang应用无侵入插桩技术解决方案,旨在解决Golang应用监控的挑战。
唯一不变的是变化,在现代复杂的商业环境中,企业的业务形态与规模往往处于不断变化和扩大之中。这种动态发展对企业的信息系统提出了更高的要求,特别是在软件架构方面。为了应对不断变化的市场需求和业务扩展,软件架构必须进行相应的演进和优化。网关作为互联网流量的入口,其形态也在跟随软件架构持续演进迭代中。我们下面就聊一聊网关的演进历程以及在时下火热的 AI 浪潮下,网关又会迸发怎样新的形态。
在当今数字化转型加速的时代,企业 IT 系统的复杂度与日俱增,如何高效地管理和监控这些系统成为了一项挑战。阿里云作为全球领先的云计算服务商,提供了一整套全面的可观测性解决方案,覆盖从业务、端侧(小程序、APP、H5 等)、应用、中间件、容器/ECS 等全栈的监控体系,旨在帮助企业构建强大而灵活的可观测性体系。其中,标签(Tag)作为一种核心组织和管理手段,在阿里云可观测体系中扮演着至关重要的角色。本文将深入探讨阿里云可观测系列产品中标签的应用,以及如何运用标签在阿里云可观测产品体系下进行体系化建设并给出相关最佳实践。