随着大模型能力越来越强大,利用大语言模型进行智能答疑已经成为了一个非常普遍和常见的场景。然而,各个产品或业务方要能够准确有效地进行答疑,仅依靠大模型的通用能力是远远不够的,这时候利用私有领域FAQ文档进行大模型的检索增强生成往往可以有效解决上述问题。
本文将从使用的角度出发,来更详细的展示一下流存储的场景,看看它和业务消息的场景有哪些区别。 RocketMQ 5.0 面向流存储的场景,提供了哪些特性。再结合两个数据集成的案例,来帮助大家了解流存储的用法。
本文介绍了如何通过阿里云 MSE 微服务引擎和云效应用交付平台 AppStack 实现灰度发布。
资源编排ROS模块能够实现模板代码复用。支持输入输出、公共模块、版本管理、共享模块等功能。在使用场景上,除了对基础设施模块化外,还可作为配置、数据处理工具或资源包装器。
本文讨论了微服务上云过程中的稳定性挑战,特别是变更引起的生产故障。阿里云MSE(微服务引擎)提供了一种全链路无损发布方案,旨在消除变更风险,实现白天流量高峰时的安全发布。
本⽂对 Prompt 的使用方式进行了简单介绍,让大家了解到 Prompt 对于 LLM 的重要性。并尝试在 Prompt 中结合用户 Geo IP 信息,实现 LLM 的个性化回复,提升问答的准确度。