借助 AI-native 可观测解决方案,阿里云为用户提供开箱即用的覆盖大模型应用、大模型到基础设施的全链路实时观测、告警与诊断能力,帮助企业在复杂的数字化转型过程中更有效地确保资源的高效利用与业务的持续成功。
大模型不知不觉已经火了快一年了,拥有一个能够随时对话使用的大模型已经成为不少人的刚需。然而,最大的问题可能是如何访问和调用对话模型。如果,我是说如果,能在您的即时通讯软件钉钉中直接与通义千问对话,是不是会让这一切更方便快捷?! 按照传统方案,我们要实现上述场景可能需要非常繁琐的接入步骤,甚至还需要自行开发很多代码,这样的准入门槛实在,太!高!啦! 而今天,我要向各位隆重介绍一个新的解决方案——阿里云计算巢AppFlow应用与数据集成平台,无需任何代码开发,简单快捷,自动连接企业内部应用与外部应用或数据,搭建企业的自动化服务流程,帮助个人、企业降低了集成实施的周期和成本。
MCP Specification 在 2025-03-26 发布了最新的版本,本文对主要的改动进行详细介绍和解释
大型语言模型(Large language models,LLM)是基于大量数据进行预训练的超大型深度学习模型,本文主要讲述TensorRT-LLM利用量化、In-Flight Batching、Attention、Graph Rewriting提升 LLM 模型推理效率。
本文介绍了 Kubernetes 中的容器工作内存(WorkingSet)概念,它用于表示容器内存的实时使用量,尤其是活跃内存。
 
              阿里云云效是国内领先的一站式DevOps平台,提供代码全生命周期管理、智能化交付流水线及精细化研发管控,支持多种开发场景。本文详细介绍了从其他平台(如Coding)向云效迁移的完整方案,包括代码仓库、流水线、制品仓库及项目数据的迁移步骤,帮助用户实现高效、安全的平滑迁移,提升研发效率与协作能力。
当管理多个Prometheus实例时,阿里云Prometheus托管版相比社区版提供了更可靠的数据采集和便捷的管理。本文比较了全局聚合实例与数据投递方案,两者在不同场景下各有优劣。
通义灵码Project Rules是一种针对AI代码生成的个性化规则设定工具,旨在解决AI生成代码不精准或不符合开发者需求的问题。通过定义编码规则(如遵循SOLID原则、OWASP安全规范等),用户可引导模型生成更符合项目风格和偏好的代码。例如,在使用阿里云百炼服务平台的curl调用时,通义灵码可根据预设规则生成Java代码,显著提升代码采纳率至95%以上。此外,还支持技术栈、应用逻辑设计、核心代码规范等多方面规则定制,优化生成代码的质量与安全性。