微服务架构下,有一些需求开发涉及到微服务调用链路上的多个微服务同时改动。通常每个微服务都会有灰度环境或分组来接受灰度流量。我们希望进入上游灰度环境的流量也能进入下游灰度的环境中,确保1个请求始终在灰度环境中传递。即使这个调用链路上有一些微服务应用不存在灰度环境,那么这些微服务应用在请求下游应用的时候依然能够回到下游应用的灰度环境中。我们通过 MSE 提供的全链路灰度能力,可以在不需要修改任何业务代码的情况下,轻松实现上述所说的全链路灰度能力。
当前阿里云函数计算支持两种类型的函数:事件函数和 HTTP 函数。其中 HTTP 函数结合 HTTP 触发器,能够支持用户直接通过 HTTP 请求利用 Restful API 的方式发起函数调用;通过这种方式,用户无需集成函数计算提供的 SDK 就能实现函数调用,更好地同已有系统的组件及 Web 服...
“可观测”是近几年比较火的一个议题,而 OPLG 就是包含了 OpenTelemetry、Prometheus、Loki 和 Grafana 在内的开源可观测技术合集,它们之间将碰撞出什么样的火花?请阅读本文介绍的基于 OPLG 从 0 到 1 构建统一可观测平台实践。
本文从常见的微服务治理场景出发,从流量路由这个场景入手。先是根据流量路由的实践设计流量路由的 Spec,同时在 Spring Cloud Alibaba 中实践遵循 OpenSergo 标准的流量路由能力。
MSE 云原生网关默认提供了丰富的 Metrics 指标大盘,配合阿里云 Prometheus 监控提供开箱即用的完整可观测性能力,能够帮助用户快捷、高效的搭建自身的微服务网关与对应的可观测体系。
本文介绍基于函数计算实现的异步任务执行框架(编程语言:Python3),把跟阿里云资源开通相关的API封装到一个独立的模块,提供标准的API跟企业内部在用的ITSM或OA进行集成,降低客户对接API门槛,更快上阿里云。
广义上的链路成本,既包含使用链路追踪产生的数据生成、采集、计算、存储、查询等额外资源开销,也包含链路系统接入、变更、维护、协作等人力运维成本。为了便于理解,本小节将聚焦在狭义上的链路追踪机器资源成本,人力成本将在下一小节(效率)进行介绍。
“从一次常见的发布说起,在云上某个系统应用发布时,重启阶段会导致较大数量的 OpenAPI、上游业务的请求响应时间明显增加甚至超时失败。随着业务的发展,用户数和调用数越来越多,该系统又一直保持一周发布二次的高效迭代频率,发布期间对业务的影响越来越无法接受,微服务下线的治理也就越来越紧迫。”
Serverless的理念是即时弹性,用完即走。服务并非长时间运行,这也就意味着像websocket这种长链接的请求模式看起来并不适合Serverless,但是否有其他的办法既能满足长连接模式请求,也能够利用Serverless本身特性呢?答案是肯定的,我们通过API网关来解决webscoket连接的问题,然后由网关触达Serverless服务的后端,本文以弹幕场景为例来介绍如何使用Serverless架构实现全双工通信。