官方博客-第3页-阿里云开发者社区

  • 6074

    GraphRAG:基于PolarDB+通义千问+LangChain的知识图谱+大模型最佳实践

    本文介绍了如何使用PolarDB、通义千问和LangChain搭建GraphRAG系统,结合知识图谱和向量检索提升问答质量。通过实例展示了单独使用向量检索和图检索的局限性,并通过图+向量联合搜索增强了问答准确性。PolarDB支持AGE图引擎和pgvector插件,实现图数据和向量数据的统一存储与检索,提升了RAG系统的性能和效果。

  • 2025-03-14
    1773

    详解大模型应用可观测全链路

    阿里云可观测解决方案从几个方面来尝试帮助使用 QwQ、Deepseek 的 LLM 应用开发者来满足领域化的可观测述求。

    1,773
  • 2024-05-15
    3722

    高并发架构设计三大利器:缓存、限流和降级

    软件系统有三个追求:高性能、高并发、高可用,俗称三高。本篇讨论高并发,从高并发是什么到高并发应对的策略、缓存、限流、降级等。

    3,722
  • 2024-09-27
    839

    灵魂拷问-前端的作用--性能优化篇

    作者最近在尝试对负责的平台进行性能优化,本文整理了些前端性能优化的一些常见策略。

    839
  • 2025-04-15
    2024

    MCP Server 开发实战 | 大模型无缝对接 Grafana

    以 AI 世界的“USB-C”标准接口——MCP(Model Context Protocol)为例,演示如何通过 MCP Server 实现大模型与阿里云 Grafana 服务的无缝对接,让智能交互更加高效、直观。

  • 2024-05-15
    2508

    为大模型工程提效,基于阿里云 ACK 的云原生 AI 工程化实践

    本文主要介绍了解析云原生 AI 所遇到的技术挑战和应对方案,随后介绍云原生 AI 领域的关键技术与架构细节,最后分享我们在 ACK 的相关经验及工程实践。

  • 2024-05-24
    62644

    ClickHouse物化视图里常见的7个坑,点进看避坑指南

    一文解析ClickHouse物化视图

    62,644
  • 2025-09-24
    390

    配置驱动的动态 Agent 架构网络:实现高效编排、动态更新与智能治理

    本文所阐述的配置驱动智能 Agent 架构,其核心价值在于为 Agent 开发领域提供了一套通用的、可落地的标准化范式。

  • 2024-06-24
    53219

    从云原生视角看 AI 原生应用架构的实践

    本文核心观点: • 基于大模型的 AI 原生应用将越来越多,容器和微服务为代表的云原生技术将加速渗透传统业务。 • API 是 AI 原生应用的一等公民,并引入了更多流量,催生企业新的生命力和想象空间。 • AI 原生应用对网关的需求超越了传统的路由和负载均衡功能,承载了更大的 AI 工程化使命。 • AI Infra 的一致性架构至关重要,API 网关、消息队列、可观测是 AI Infra 的重要组成。

    53,219
  • 1
    2
    3
    4
    ...
    66
    到第