从整体技术架构上学习 RocketMQ 5.0 的云原生架构、一体化架构,最后再分别从业务场景切入,详细介绍 RocketMQ 5.0 在不同的业务场景提供的能力和关键技术原理,包括业务消息、流处理、物联网以及面向云时代的事件驱动场景。
本文介绍 Higress 将 Wasm 插件的运行时从 V8 切换到 WebAssembly Micro Runtime (WAMR) 的最新进展。
本文浅析了MySQL Join Reorder算法的流程,cost计算,剪枝算法等,希望通过本文能帮助大家了解MySQL优化器生成执行计划的具体流程。
MySQL支持了很多Charset与Collation,并且允许用户在连接、Server、库、表、列、字面量多个层次上进行精细化配置,这有时会让用户眼花缭乱。本文对相关概念、语法、系统变量、影响范围都进行了详细介绍,并且列举了有可能让字符串发生字符集转换的情况,以及来自不同字符集的字符串进行比较等操作时遵循的规则。对于最常用的基于Unicode的字符集,本文介绍了Unicode标准与MySQL中各个字符集的关系,尤其详细介绍了当前版本(8.0.34)默认字符集utf8mb4。
本文介绍了MCP(模型上下文协议)及其在AI领域的应用前景。MCP由Anthropic公司推出,通过标准化通信协议实现AI与数据源间的安全隔离,解决了传统AI应用中的数据隐私和安全问题。文章探讨了从LLM到MCP的进化过程,并分析了其面临的挑战,如算力不足和开放性需求。Serverless技术被提出作为解决这些问题的方案,提供弹性算力和支持安全沙箱环境。最后,文章提供了如何一键部署热门MCP Server的教程,帮助开发者快速上手并体验该协议的实际应用效果。
本文从一个通用的客户问题出发,描述了一个问题如何从前置排查到使用AI Profiling进行详细的排查,最后到问题定位与解决、业务执行过程的分析,从而展现一个从黑箱到透明的精细化的剖析过程。
大型语言模型(Large language models,LLM)是基于大量数据进行预训练的超大型深度学习模型,本文主要讲述TensorRT-LLM利用量化、In-Flight Batching、Attention、Graph Rewriting提升 LLM 模型推理效率。
本文由日志关键词告警出发,介绍了使用SLS进行关键词监控告警配置,并且介绍了几种常见的配置方法,可以覆盖关键词监控的大部分场景。