官方博客-第2页-阿里云开发者社区

  • 阿里云 MCP Server 开箱即用!

    本文介绍了如何通过alibaba-cloud-ops-mcp-server和MCP(Model Context Protocol)实现AI助手对阿里云资源的复杂任务操作。内容涵盖背景、准备步骤(如使用VS Code与Cline配置MCP Server)、示例场景(包括创建实例、监控实例、运行命令、启停实例等),以及支持的工具列表和参考文档。借助这些工具,用户可通过自然语言与AI助手交互,完成ECS实例管理、VPC查询、云监控数据获取等运维任务,实现高效“掌上运维”。

  • 2025-01-14
    3900

    Spring AI 智能体通过 MCP 集成本地文件数据

    MCP 作为一款开放协议,直接规范了应用程序如何向 LLM 提供上下文。MCP 就像是面向 AI 应用程序的 USB-C 端口,正如 USB-C 提供了一种将设备连接到各种外围设备和配件的标准化方式一样,MCP 提供了一个将 AI 模型连接到不同数据源和工具的标准化方法。

    3,900
  • 2025-04-16
    2576

    从理论到落地:MCP 实战解锁 AI 应用架构新范式

    本文旨在从 MCP 的技术原理、降低 MCP Server 构建复杂度、提升 Server 运行稳定性等方面出发,分享我们的一些实践心得。

    2,576
  • 2024-11-06
    3572

    再也不用心惊胆战地使用FastJSON了——序列化篇

    本篇将主要介绍json序列化的详细流程。本文阅读的FastJSON源码版本为2.0.31。

    3,572
  • 2024-08-29
    2629

    深入理解 RDMA 的软硬件交互机制

    本文深入分析了RDMA技术在数据中心高性能网络环境下的工作原理及软硬件交互机制,通过对比传统Kernel TCP,突出了RDMA在减少延迟、提高系统性能方面的优势,同时讨论了其在内存管理、软硬交互方面的关键技术和挑战,为读者提供了全面理解RDMA技术及其应用场景的视角。

    2,629
  • 2025-05-22
    2055

    Spring AI Alibaba 发布企业级 MCP 分布式部署方案

    本文介绍了Spring AI Alibaba MCP的开发与应用,旨在解决企业级AI Agent在分布式环境下的部署和动态更新问题。通过集成Nacos,Spring AI Alibaba实现了流量负载均衡及节点变更动态感知等功能。开发者可方便地将企业内部业务系统发布为MCP服务或开发自己的AI Agent。文章详细描述了如何通过代理应用接入存量业务系统,以及全新MCP服务的开发流程,并提供了完整的配置示例和源码链接。未来,Spring AI Alibaba计划结合Nacos3的mcp-registry与mcp-router能力,进一步优化Agent开发体验。

    2,055
  • 2025-03-14
    1671

    详解大模型应用可观测全链路

    阿里云可观测解决方案从几个方面来尝试帮助使用 QwQ、Deepseek 的 LLM 应用开发者来满足领域化的可观测述求。

    1,671
  • 2024-05-24
    62550

    ClickHouse物化视图里常见的7个坑,点进看避坑指南

    一文解析ClickHouse物化视图

    62,550
  • 2025-04-25
    1645

    MCP Server 实践之旅第 1 站:MCP 协议解析与云上适配

    本文深入解析了Model Context Protocol(MCP)协议,探讨其在AI领域的应用与技术挑战。MCP作为AI协作的“USB-C接口”,通过标准化数据交互解决大模型潜力释放的关键瓶颈。文章详细分析了MCP的生命周期、传输方式(STDIO与SSE),并提出针对SSE协议不足的优化方案——MCP Proxy,实现从STDIO到SSE的无缝转换。同时,函数计算平台被推荐为MCP Server的理想运行时,因其具备自动弹性扩缩容、高安全性和按需计费等优势。最后,展望了MCP技术演进方向及对AI基础设施普及的推动作用,强调函数计算助力MCP大规模落地,加速行业创新。

  • 1
    2
    3
    4
    ...
    71
    到第