本文探讨了AI应用在实际落地过程中面临的三大核心问题:如何高效使用AI模型、控制成本以及保障输出质量。文章详细分析了AI应用的典型架构,并提出通过全栈可观测体系实现从用户端到模型推理层的端到端监控与诊断。结合阿里云的实践经验,介绍了基于OpenTelemetry的Trace全链路追踪、关键性能指标(如TTFT、TPOT)采集、模型质量评估与MCP工具调用观测等技术手段,帮助企业在生产环境中实现AI应用的稳定、高效运行。同时,针对Dify等低代码平台的应用部署与优化提供了具体建议,助力企业构建可扩展、可观测的AI应用体系。
背景阿里云API网关服务提供API托管服务,提供了强大的适配和集成能力,可以将各种不同的业务系统API实现统一管理。API网关同时支持将API访问日志一键存储到日志服务,通过日志服务强大的查询分析能力,用户可以针对访问日志自定义计算多种指标,监测服务运行情况。继而通过定时SQL将结果指标直接存储到时...
针对图像检索业务场景,PAI提供了端到端的相似图像匹配和图像检索解决方案。本文介绍如何基于未标注的数据构建图像自监督模型,助力您快速搭建相似图像匹配和图像检索业务系统,进而实现以图搜图。
针对问题咨询场景中出现大量相关领域的问题,PAI提供了智能客服对话系统解决方案,以降低客户等待时间和人工客服成本。本文以汽车售前咨询业务领域为例,介绍如何基于人工智能算法,快速构建智能客服对话系统。
在绿色计算的大背景下,算力分配将朝着更加高效和智能的方向持续演进。本文将介绍阿里妈妈展示广告引擎在全局视角下优化算力分配的新探索,让在线引擎像变形金刚一样灵活强悍。算力在提倡节能减排,降本增效,追求绿色技术的大趋势下,充分利用好算力资源,尤其是在阿里妈妈展示广告引擎这种使用近百万core机器资源的业...