官方博客-第8页-阿里云开发者社区

  • 2024-05-15
    3842

    大模型推理优化实践:KV cache复用与投机采样

    在本文中,我们将详细介绍两种在业务中实践的优化策略:多轮对话间的 KV cache 复用技术和投机采样方法。我们会细致探讨这些策略的应用场景、框架实现,并分享一些实现时的关键技巧。

    3,842
  • 2025-04-01
    419

    从 DeepSeek 敏感信息泄露谈可观测系统的数据安全预防

    探讨了 SLS 中增强数据安全的几种方式:权限精细化管控有效减少了潜在安全风险;接入层脱敏技术阻止敏感数据落库,提升了隐私保护;StoreView 字段集控制通过限制查询数据范围,降低数据泄露损害。智能监控系统提供实时监测,快速识别并阻断异常拖库行为,为企业提供了迅速响应和抵御威胁的能力。

    419
  • 2024-05-15
    1353

    从零构建现代深度学习框架(TinyDL-0.01)

    本文主要以一个Java工程师视角,阐述如何从零(无任何二三方依赖)构建一个极简(麻雀虽小五脏俱全)现代深度学习框架(类比AI的操作系统)。

    1,353
  • 2024-09-03
    1600

    速成RAG+Agent框架大模型应用搭建

    本文侧重于能力总结和实操搭建部分,从大模型应用的多个原子能力实现出发,到最终串联搭建一个RAG+Agent架构的大模型应用。

    1,600
  • 2024-12-24
    1324

    探索大型语言模型LLM推理全阶段的JSON格式输出限制方法

    本篇文章详细讨论了如何确保大型语言模型(LLMs)输出结构化的JSON格式,这对于提高数据处理的自动化程度和系统的互操作性至关重要。

    1,324
  • 2025-02-07
    846

    浏览量超 10w 的热图,描述 RAG 的主流架构

    大模型性能的持续提升,进一步挖掘了 RAG 的潜力,RAG 将检索系统与生成模型相结合,带来诸多优势,如实时更新知识、降低成本等。点击本文,为您梳理 RAG 的基本信息,并介绍提升大模型生成结果的方法,快一起看看吧~

    846
  • 2024-05-15
    119145

    Paimon 与 Spark 的集成(二):查询优化

    通过一系列优化,我们将 Paimon x Spark 在 TpcDS 上的性能提高了37+%,已基本和 Parquet x Spark 持平,本文对其中的关键优化点进行了详细介绍。

    119,145
  • 2024-05-15
    142861

    深度剖析 RocketMQ 5.0,架构解析:云原生架构如何支撑多元化场景?

    了解 RocketMQ 5.0 的核心概念和架构概览;然后我们会从集群角度出发,从宏观视角学习 RocketMQ 的管控链路、数据链路、客户端和服务端如何交互;学习 RocketMQ 如何实现数据的存储,数据的高可用,如何利用云原生存储进一步提升竞争力。

    142,861
  • 2024-05-15
    240077

    一文掌握大模型提示词技巧:从战略到战术

    本文将用通俗易懂的语言,带你从战略(宏观)和战术(微观)两个层次掌握大模型提示词的常见技巧,真正做到理论和实践相结合,占领 AI 运用的先机。

    240,077
  • 1
    ...
    7
    8
    9
    ...
    51
    到第