随着互联网从 Web 2.0 迈进到 AI 时代,用户和互联网的交互方式,AI 时代下互联网的内容生产流程都发生了显著的转变,这对基础设施(Infra)提出了新的诉求,也带来了新的机遇。Infra 包含的内容非常丰富,本文仅从网关层面分享笔者的所见所感所悟。
近日,阿里云可观测产品家族正式发布云监控 2.0,隶属产品日志服务 SLS、云监控 CMS、应用实时监控服务 ARMS 迎来重磅升级。
本文将演示如何使用事件总线(EventBridge),向量检索服务(DashVector),函数计算(FunctionCompute)结合灵积模型服务[1]上的 Embedding API[2],来从 0 到 1 构建基于文本索引的构建+向量检索基础上的语义搜索能力。具体来说,我们将基于 OSS 文本文档动态插入数据,进行实时的文本语义搜索,查询最相似的相关内容。
在这个数字化时代,提供卓越的客户服务已成为企业脱颖而出的关键。为了满足这一需求,越来越多的企业开始探索人工智能(AI)助手的应用,以实现全天候(7x24)的客户咨询响应,全面提升用户体验和业务竞争力。本解决方案通过函数计算FC 和大模型服务平台百炼,为您提供一个高效便捷构建 AI 助手思路。
是否还记得 2022 年 K8s Ingress Nginx 披露了的 3 个高危安全漏洞(CVE-2021-25745, CVE-2021-25746, CVE-2021-25748),并在那一年宣布停止接收新功能 PR,专注修复并提升稳定性。
本文将展示如何基于阿里云PAI灵骏智算服务,在通义千问开源模型之上进行高效分布式继续预训练、指令微调、模型离线推理验证以及在线服务部署。
本文主要介绍业务消息的应用解耦场景,具体解耦什么? RocketMQ 在业务消息场景的基础特性。业界那么多消息队列能实现应用解耦,RocketMQ 在基础特性上有哪些增强?
在应用开发测试验证通过后、进行生产发布前,为了降低新版本发布带来的风险,期望能够先部署到灰度环境,用小部分业务流量进行全链路灰度验证,验证通过后再全量发布生产。本文主要介绍如何通过阿里云MSE 微服务引擎和云效应用交付平台AppStack 实现灰度发布。