本文深入探讨当前最前沿的prompt engineering方案,结合OpenAI、Anthropic和Google等大模型公司的资料,以及开源社区中宝贵的prompt技巧分享,全面解析这一领域的实践策略。
本文整理自阿里云智能集团资深技术专家,云原生产品线中间件负责人谢吉宝(唐三)在云栖大会的精彩分享。讲师深入浅出的分享了软件架构演进过程中,网关所扮演的各类角色,AI 应用的流量新特征对软件架构和网关所提出的新诉求,以及基于阿里自身实践所带来的开源贡献和商业能力。
政采云基础架构团队技术专家朱海峰介绍了业务网关项目的背景和解决方案。
MSE(微服务引擎)在微服务全链路灰度场景下提供了一套成熟的功能,支持内容规则和百分比规则的灰度路由策略。
vLLM是UC Berkeley开源的大语言模型高速推理框架,其内存管理核心——PagedAttention、内置的加速算法如Continues Batching等,一方面可以提升Yuan2.0模型推理部署时的内存使用效率,另一方面可以大幅提升在实时应用场景下Yuan2.0的吞吐量。
业务体量增大后,日益凸显的架构稳定性问题该如何解决?满帮集团选择了上阿里云,采用阿里云 MSE Nacos,MSE ZooKeeper 产品替换原先的 Eureka 和 Zookeeper 集群,做到了低成本快速的架构升级,以及上云期间业务流量的无损平滑迁移。
本文基于阿里云技术服务团队和产研团队,在解决易易互联使用 MSE(微服务引擎)产品无损上线功能所遇到问题的过程总结而成。本文将从问题和解决方法谈起,再介绍相关原理,后进一步拓展到对微服务引擎和云原生网关无损上线能力的介绍。