本文将介绍PolarDB-X对于向量化SIMD指令的探索和实践,包括基本用法及实现原理,以及在具体算子实现中的思考和沉淀。
基于单个开源小模型的工具调用Agent,由于模型容量和预训练能力获取的限制,无法在推理和规划、工具调用、回复生成等任务上同时获得比肩大模型等性能。
本文为大模型RAG对话系统最佳实践,旨在指引AI开发人员如何有效地结合LLM大语言模型的推理能力和外部知识库检索增强技术,从而显著提升对话系统的性能,使其能更加灵活地返回用户查询的内容。适用于问答、摘要生成和其他依赖外部知识的自然语言处理任务。通过该实践,您可以掌握构建一个大模型RAG对话系统的完整开发链路。
多模态理解模型具有广泛的应用,比如多标签分类、视频问答(videoQA)和文本视频检索等。现有的方法已经在视频和语言理解方面取得了重大进展,然而,他们仍然面临两个巨大的挑战:无法充分的利用现有的特征;训练时巨大的GPU内存消耗。我们提出了MuLTI,这是一种高度准确高效的视频和语言理解模型,可以实现高效有效的特征融合和对下游任务的快速适应。本文详细介绍基于MuLTI实现高效视频与语言理解。
本期文章,我们将向大家展示如何使用AgentScope中构建和使用具有RAG功能的智能体,创造AgentScope助手群,为大家解答和AgentScope相关的问题。
Modelscope AgentFabric是一个基于ModelScope-Agent的交互式智能体应用,用于方便地创建针对各种现实应用量身定制智能体,目前已经在生产级别落地。
大语言模型的革命性突破使智能编程成为了可能,通义灵码正是基于通义大模型打造的 AI 编程助手,通过 IDE 插件的形式提供代码补全、单元测试生成等功能,能达到毫秒级的响应速度。目前,通义灵码已在阿里云内部及多家企业中应用,阿里云也在探索多智能体产品,即 AI 程序员,助力数字世界的蓬勃发展,颠覆 IT 生产力。
本文将通过阿里云开源的 Golang Agent,帮助用户实现“一行代码都不改”就能获取到应用产生的各种观测数据,同时提升运维团队和研发团队的幸福感。