官方博客-第10页-阿里云开发者社区

  • 2024-05-15
    2842

    Multi-Agent实践第5期:RAG智能体的应用:让AgentScope介绍一下自己吧

    本期文章,我们将向大家展示如何使用AgentScope中构建和使用具有RAG功能的智能体,创造AgentScope助手群,为大家解答和AgentScope相关的问题。

    2,842
  • 2024-11-06
    3960

    再也不用心惊胆战地使用FastJSON了——序列化篇

    本篇将主要介绍json序列化的详细流程。本文阅读的FastJSON源码版本为2.0.31。

    3,960
  • 321

    为什么说多模态是推荐系统破局的关键?来自饿了么一线的实战复盘

    推荐系统作为互联网时代连接用户与信息的核心技术,正在经历从传统协同过滤向多模态智能推荐的重要变革。随着深度学习技术的快速发展,特别是大语言模型和多模态预训练技术的成熟,推荐系统开始从单纯依赖用户行为ID特征转向充分利用商品图像、文本描述等丰富内容信息的新范式。

    321
  • 2024-05-15
    1382

    元象大模型开源30款量化版本 加速低成本部署丨附教程

    元象大模型一次性发布30款量化版本,全开源,无条件免费商用。

    1,382
  • 2024-05-15
    63503

    All in One:Prometheus 多实例数据统一管理最佳实践

    当管理多个Prometheus实例时,阿里云Prometheus托管版相比社区版提供了更可靠的数据采集和便捷的管理。本文比较了全局聚合实例与数据投递方案,两者在不同场景下各有优劣。

  • 2025-01-16
    1260

    现身说法,AI小白的大模型学习路径

    写这篇文章的初衷:作为一个AI小白,把我自己学习大模型的学习路径还原出来,包括理解的逻辑、看到的比较好的学习材料,通过一篇文章给串起来,对大模型建立起一个相对体系化的认知,才能够在扑面而来的大模型时代,看出点门道。

    1,260
  • 2024-09-04
    2626

    【算法精讲系列】MGTE系列模型,RAG实施中的重要模型

    检索增强生成(RAG)结合检索与生成技术,利用外部知识库提升大模型的回答准确性与丰富性。RAG的关键组件包括文本表示模型和排序模型,前者计算文本向量表示,后者进行精细排序。阿里巴巴通义实验室推出的GTE-Multilingual系列模型,具备高性能、长文档支持、多语言处理及弹性向量表示等特性,显著提升了RAG系统的检索与排序效果。该系列模型已在多个数据集上展示出优越性能,并支持多语言和长文本处理,适用于各种复杂应用场景。

    2,626
  • 2024-05-15
    118214

    阿里云PAI大模型RAG对话系统最佳实践

    本文为大模型RAG对话系统最佳实践,旨在指引AI开发人员如何有效地结合LLM大语言模型的推理能力和外部知识库检索增强技术,从而显著提升对话系统的性能,使其能更加灵活地返回用户查询的内容。适用于问答、摘要生成和其他依赖外部知识的自然语言处理任务。通过该实践,您可以掌握构建一个大模型RAG对话系统的完整开发链路。

    118,214
  • 2024-07-30
    3790

    5 大场景上手通义灵码企业知识库问答

    通义灵码在企业版里还引入了一个超酷的新技能:RAG(Retrieval-Augmented Generation)检索增强生成的能力,本文就跟大家分享下企业知识库能帮开发者做些什么。

  • 1
    ...
    9
    10
    11
    ...
    52
    到第