广义上的链路成本,既包含使用链路追踪产生的数据生成、采集、计算、存储、查询等额外资源开销,也包含链路系统接入、变更、维护、协作等人力运维成本。为了便于理解,本小节将聚焦在狭义上的链路追踪机器资源成本,人力成本将在下一小节(效率)进行介绍。
借助日志治理的现有能力,我们能够在不重启应用的前提下,动态采集任意点位信息,同时由于日志治理在采集信息时会引入链路信息,在分析复杂调用问题时能够起到很好的效果。
iLogtail致力于打造覆盖Trace、Metrics 以及Logging 的可观测性的统一Agent,而对Kubernetes 语义的原生支持大大增强了Log在Kubernetes场景的采集体验。
块存储的监控与运维是非常重要的,EBS Lens针对块存储提供数据分析、资源监控的功能,可以帮助用户获取云上块存储资源信息与性能监控数据、提升云上块存储资源的管理效率、高效分析业务波动与资源性能消耗情况。
数据湖技术在日志生态中扮演不可或缺的角色,而打通日志从生产端到数据湖的链路却比较复杂。本文将介绍基于 SLS 方案为日志入湖提供端到端(End-to-End)支持,帮助用户提升接入效率,并在费用、运维上有效降低成本。
时序引擎在可观测场景中的重要性Metrics作为IT可观测性数据的三剑客之一,是可观测场景的重要组成部分,相比Log、Trace数据,具备成本更低、数据源更丰富、适用面更广的特点,SLS在2年多前发布了时序存储引擎,并完全兼容了Prometheus的语法。目前已经有1万+的用户、10万+的实例,每天...
本文探讨了 Manus 智能体的设计及其与传统智能体的差异,重点分析了 CodeAct 机制对智能体执行效率的提升。作者通过《基于LLM的数据仓库》实验反思了交互接口选择的重要性,并提出操作系统和文件系统作为良好的自反馈交互系统。文章进一步结合 GitOps 和持续集成(CICD)理念,设计了一种低成本、可观测性强的智能体运行方案,包括计划智能体(Planner)和执行智能体(Executor)的协作流程。通过实际案例对比,展示了 GitOps 智能体与 Manus 的相似效果,并总结了其在记忆增强、推理可观测性、低成本部署及跨环境适配等方面的优势。最后提供了相关代码路径和参考材料。