本文详细阐述了Prompt的设计要素,包括引导语、上下文信息等,还介绍了多种Prompt编写策略,如复杂规则拆分、关键信息冗余、使用分隔符等,旨在提高模型输出的质量和准确性。通过不断尝试、调整和优化,可逐步实现更优的Prompt设计。
探讨了 SLS 中增强数据安全的几种方式:权限精细化管控有效减少了潜在安全风险;接入层脱敏技术阻止敏感数据落库,提升了隐私保护;StoreView 字段集控制通过限制查询数据范围,降低数据泄露损害。智能监控系统提供实时监测,快速识别并阻断异常拖库行为,为企业提供了迅速响应和抵御威胁的能力。
本文深入探讨了AI时代数据处理的变革与挑战,分析了事件驱动架构(EventBridge)在AI数据处理中的技术优势,并结合实践案例,展示了其在多源数据接入、向量数据库优化、智能数据转换等方面的应用价值。
Ray是一个开源分布式计算框架,专为支持可扩展的人工智能(AI)和Python应用程序而设计。它通过提供简单直观的API简化分布式计算,使得开发者能够高效编写并行和分布式应用程序 。Ray广泛应用于深度学习训练、大规模推理服务、强化学习以及AI数据处理等场景,并构建了丰富而成熟的技术生态。
简介:本文整理自阿里云高级技术专家李麟在Flink Forward Asia 2025新加坡站的分享,介绍了Flink 2.1 SQL在实时数据处理与AI融合方面的关键进展,包括AI函数集成、Join优化及未来发展方向,助力构建高效实时AI管道。
文章详细讨论了如何确保大型语言模型(LLMs)输出结构化的JSON格式,这对于提高数据处理的自动化程度和系统的互操作性至关重要。