本文探讨了AI应用在实际落地过程中面临的三大核心问题:如何高效使用AI模型、控制成本以及保障输出质量。文章详细分析了AI应用的典型架构,并提出通过全栈可观测体系实现从用户端到模型推理层的端到端监控与诊断。结合阿里云的实践经验,介绍了基于OpenTelemetry的Trace全链路追踪、关键性能指标(如TTFT、TPOT)采集、模型质量评估与MCP工具调用观测等技术手段,帮助企业在生产环境中实现AI应用的稳定、高效运行。同时,针对Dify等低代码平台的应用部署与优化提供了具体建议,助力企业构建可扩展、可观测的AI应用体系。
相对于传统软件研发,微服务架构下典型的需求交付最大的区别在于有了能够小范围真实验证的机制,且交付单位较小,风险可控,灰度发布可以弥补线下测试的不足。本文从 DevOps 视角概述灰度发布实践,介绍如何将灰度发布与 DevOps 工作融合,快来了解吧~
本文首先讲述了什么是单元测试、单元测试的价值、一个好的单元测试所具备的原则,进而引入如何去编写一个好的单元测试,通义灵码是如何快速生成单元测试的。
大模型性能的持续提升,进一步挖掘了 RAG 的潜力,RAG 将检索系统与生成模型相结合,带来诸多优势,如实时更新知识、降低成本等。点击本文,为您梳理 RAG 的基本信息,并介绍提升大模型生成结果的方法,快一起看看吧~
Spring AI Alibaba Graph 的核心开发已完成,即将发布正式版本。开发者可基于此轻松构建工作流、智能体及多智能体系统,功能丰富且灵活。文章通过三个示例展示了其应用:1) 客户评价处理系统,实现两级问题分类与自动处理;2) 基于 ReAct Agent 的天气预报查询系统,循环执行用户指令直至完成;3) 基于 Supervisor 多智能体的 OpenManus 实现,简化了流程控制逻辑并优化了工具覆盖度。此外,还提供了运行示例的方法及未来规划,欢迎开发者参与贡献。
本文介绍了 Kubernetes 中的容器工作内存(WorkingSet)概念,它用于表示容器内存的实时使用量,尤其是活跃内存。
本文介绍如何利用智能体与Python代码批量处理Excel中的脏数据,解决人工录入导致的格式混乱、逻辑错误等问题。通过构建具备数据校验、异常标记及自动修正功能的系统,将数小时的人工核查任务缩短至分钟级,大幅提升数据一致性和办公效率。
本文以构建系统可观测为切入点,对比 OpenTelemetry 与 Prometheus 的相同与差异,重点介绍如何将应用的 OpenTelemetry 指标接入 Prometheus 及背后原理以及介绍阿里云可观测监控 Prometheus 版拥抱 OpenTelemetry及相关落地实践案例。