本文探讨了MCP(Model-Calling Protocol)的兴起及其对AI生态的影响。自2月中旬起,MCP热度显著提升,GitHub Star和搜索指数均呈现加速增长趋势。MCP通过标准化协议连接大模型与外部工具,解决了碎片化集成问题,推动AI应用货币化及生态繁荣。文章分析了MCP与Function Calling的区别,指出MCP更适用于跨平台、标准化场景,而Function Calling在特定实时任务中仍具优势。此外,MCP促进了 supply端(如云厂商、大模型、中间件服务商)和消费端(终端用户)的变革,尤其以Devin和Manus为代表,分别改变了程序员和普通用户的交互方式。
在单体的应用开发场景中涉及并发同步时,大家往往采用Synchronized(同步)或同一个JVM内Lock机制来解决多线程间的同步问题。而在分布式集群工作的开发场景中,就需要一种更加高级的锁机制来处理跨机器的进程之间的数据同步问题,这种跨机器的锁就是分布式锁。接下来本文将为大家分享分布式锁的最佳实践。
本文向大家介绍,MSE Nacos 是如何解决敏感配置的安全隐患,并提供使用 MSE Nacos 加解密敏感配置的最佳实践。
从整体技术架构上学习 RocketMQ 5.0 的云原生架构、一体化架构,最后再分别从业务场景切入,详细介绍 RocketMQ 5.0 在不同的业务场景提供的能力和关键技术原理,包括业务消息、流处理、物联网以及面向云时代的事件驱动场景。
本文主要学习 RocketMQ 的一致性特性,一致性对于交易、金融都是刚需。从大规模复杂业务出发,学习 RocketMQ 的 SQL 订阅、定时消息等特性。再从高可用的角度来看,这里更多的是大型公司对于高阶可用性的要求,如同城容灾、异地多活等。
MSE(微服务引擎)在微服务全链路灰度场景下提供了一套成熟的功能,支持内容规则和百分比规则的灰度路由策略。
本教程将带领大家免费领取阿里云PAI-EAS的免费试用资源,并且带领大家在 ComfyUI 环境下使用 SVD的模型,根据任何图片生成一个小短视频。
RocketMQ ACL 2.0 不管是在模型设计、可扩展性方面,还是安全性和性能方面都进行了全新的升级。旨在能够为用户提供精细化的访问控制,同时,简化权限的配置流程。欢迎大家尝试体验新版本,并应用在生产环境中。
Higress 最新的 1.4 版本基于为通义千问,以及多家云上 AGI 厂商客户提供 AI 网关的积累沉淀,开源了大量 AI 原生的网关能力。同时也在 Ingress、可观测、流控等云原生能力上做了全方位升级。