为什么需要可观测性?可观测性技术对业务团队的价值有哪些?如何建设一个可观测性技术体系?本文将从整体架构到核心设计一一为大家讲解。
vLLM是UC Berkeley开源的大语言模型高速推理框架,其内存管理核心——PagedAttention、内置的加速算法如Continues Batching等,一方面可以提升Yuan2.0模型推理部署时的内存使用效率,另一方面可以大幅提升在实时应用场景下Yuan2.0的吞吐量。
在本文中,作者探讨了ZooKeeper(ZK)的一个内存占用问题,特别是当有大量的Watcher和ZNode时,导致的内存消耗。
这篇文章介绍了使用开源工具NextChat和Higress搭建的一个模拟ChatGPT和通义千问对话PK的测试场景。
讲述消息系统在现代化演进中软硬一体化,百万队列,分级存储等诸多竞争力特性的诞生和落地效果。探讨业界领先的 Shared-Log 存储计算分离,FFM与协程,RDMA 传输,列式存储等技术,将消息向流的领域延伸。
日志数据格式可能是多样且复杂的,iLogtail 插件配置模式已经可以很好的支持复杂数据的处理。iLogtail2.0 又带来了 SPL 语法的重大支持,在日志处理场景下,可以通过多级管道对数据进行交互式、递进式的探索和处理,从配置交互和性能上,都有比较大的提升和优化。iLogtail2.0 已经在逐步灰度中,欢迎大家体验和使用。
在 2024 年春节前夕,修正电商事业部面临了前所未有的技术挑战,修正将参与春晚的全民健康好礼派发的活动,且在央视及各大平台进行广告投放,预计流量激增至 16 亿,系统需要承载保底 5 万 QPS,目标 10 万 QPS。修正技术团队迫切需要升级 APP 架构以应对即将到来的超高并发场景。这一挑战不仅是对技术的考验,更是对修正品牌实力的一次展示。为了应对这次巨大的技术挑战,修正技术团队选择与阿里云云原生团队合作,进行 APP 架构的升级。
阿里云云原生数据仓库AnalyticDB MySQL(ADB-M)与被OpenAI收购的实时分析数据库Rockset对比,两者在架构设计上有诸多相似点,例如存算分离、实时写入等,但ADB-M在多个方面展现出了更为成熟和先进的特性。ADB-M支持更丰富的弹性能力、强一致实时数据读写、全面的索引类型、高吞吐写入、完备的DML和Online DDL操作、智能的数据生命周期管理。在向量检索与分析上,ADB-M提供更高检索精度。ADB-M设计原理包括分布式表、基于Raft协议的同步层、支持DML和DDL的引擎层、高性能低成本的持久化层,这些共同确保了ADB-M在AI时代作为实时数据仓库的高性能与高性价比