官方博客-第19页-阿里云开发者社区

  • 2024-05-15
    749

    联合XTuner,魔搭社区全面支持数据集的长文本训练

    XTuner和魔搭社区(SWIFT)合作引入了一项长序列文本训练技术,该技术能够在多GPU环境中将长序列文本数据分割并分配给不同GPU,从而减少每个GPU上的显存占用。通过这种方式,训练超大规模模型时可以处理更长的序列,提高训练效率。魔搭社区的SWIFT框架已经集成了这一技术,支持多种大模型和数据集的训练。此外,SWIFT还提供了一个用户友好的界面,方便用户进行训练和部署,并且支持评估功能。

  • 2024-08-20
    19121

    AI 网关零代码解决 AI 幻觉问题

    本文主要介绍了 AI Agent 的背景,概念,探讨了 AI Agent 网关插件的使用方法,效果以及实现原理。

    19,121
  • 2024-09-11
    340

    表格存储低成本向量检索服务助力 AI 检索

    本文阐述了阿里云表格存储(Tablestore)如何通过其向量检索服务应对大规模数据检索的需求,尤其是在成本、规模和召回率这三个关键挑战方面。

    340
  • 2024-11-11
    770

    应用网关的演进历程和分类

    唯一不变的是变化,在现代复杂的商业环境中,企业的业务形态与规模往往处于不断变化和扩大之中。这种动态发展对企业的信息系统提出了更高的要求,特别是在软件架构方面。为了应对不断变化的市场需求和业务扩展,软件架构必须进行相应的演进和优化。网关作为互联网流量的入口,其形态也在跟随软件架构持续演进迭代中。我们下面就聊一聊网关的演进历程以及在时下火热的 AI 浪潮下,网关又会迸发怎样新的形态。

    770
  • 2024-12-06
    1348

    【阅读十分钟,百分百成功】——通过大模型实现对客服回答的质量评估

    本文章基于业务实践,总结有关客服质检场景的解决方案和处理经验,为相似场景提供可行的借鉴方法。

    1,348
  • 2025-01-02
    399

    云端问道11期实践教学-创建专属AI助手

    本次分享意在帮助用户更加全面、深入地了解百炼的核心产品能力,并通过实际操作学会如何快速将大模型与自己的系统及应用相结合。主要包括以下三个方面: 1. 阿里云百炼产品定位和能力简介 2. 知识检索 RAG 智能体应用能力和优势 3. 最佳落地案例实践分享

  • 2025-01-06
    341

    OpenAI 宕机思考丨Kubernetes 复杂度带来的服务发现系统的风险和应对措施

    Kubernetes 体系基于 DNS 的服务发现为开发者提供了很大的便利,但其高度复杂的架构往往带来更高的稳定性风险。以 Nacos 为代表的独立服务发现系统架构简单,在 Kubernetes 中选择独立服务发现系统可以帮助增强业务可靠性、可伸缩性、性能及可维护性,对于规模大、增长快、稳定性要求高的业务来说是一个较理想的服务发现方案。希望大家都能找到适合自己业务的服务发现系统。

    341
  • 2025-01-16
    1030

    现身说法,AI小白的大模型学习路径

    写这篇文章的初衷:作为一个AI小白,把我自己学习大模型的学习路径还原出来,包括理解的逻辑、看到的比较好的学习材料,通过一篇文章给串起来,对大模型建立起一个相对体系化的认知,才能够在扑面而来的大模型时代,看出点门道。

    1,030
  • 2025-02-06
    491

    详解智能编码在前端研发的创新应用

    接下来,人与智能体的交互将变得更为紧密,比如 N 年以后是否可以逐渐过渡。这个逐渐过渡的过程实际上是温和的,从依赖人类到依赖超大规模算力的转变,可能会取代我们的一些职责。这不仅仅是简单的叠加关系。对于AI和超大规模算力,这是否意味着我们可以大幅度提升软件质量,是否可以缩短研发周期并提高效率,还有创造出更优质的软件并持续发展,这无疑是肯定的。

    491
  • 1
    ...
    18
    19
    20
    ...
    51
    到第