本文探讨了AI应用在实际落地过程中面临的三大核心问题:如何高效使用AI模型、控制成本以及保障输出质量。文章详细分析了AI应用的典型架构,并提出通过全栈可观测体系实现从用户端到模型推理层的端到端监控与诊断。结合阿里云的实践经验,介绍了基于OpenTelemetry的Trace全链路追踪、关键性能指标(如TTFT、TPOT)采集、模型质量评估与MCP工具调用观测等技术手段,帮助企业在生产环境中实现AI应用的稳定、高效运行。同时,针对Dify等低代码平台的应用部署与优化提供了具体建议,助力企业构建可扩展、可观测的AI应用体系。
本文介绍了通过将 APISIX 提供的灵活的路由能力以及 MSE 提供的全链路灰度能力结合,可以在不需要修改任何业务代码的情况下,轻松实现全链路灰度能力。
本文是[全景剖析容器网络数据链路]第一部分,主要介绍Kubernetes Flannel模式下,数据面链路的转转发链路
阿里云CDN下载加速解决方案旨在通过全球调度中心智能化地将客户端的下载请求精准调度到分布于全球的最优CDN边缘节点,同时依托海量带宽储备及强大的CDN控制逻辑让企业省心省力地为用户带来极速下载体验,助力企业获得更大的市场回报。
本文是[全景剖析容器网络数据链路]第四部分部分,主要介绍Kubernetes Terway EBPF+IPVLAN模式下,数据面链路的转转发链路。
“批量生产”、“快速裂变”和“去重”是制作营销短视频的关键,基于有限数量的基础素材大规模生成指定数量的新视频,是营销短视频创作的常见思路。本篇主要介绍一些经验方法,助您更快更高效地生产优质短视频。
本文是[全景剖析容器网络数据链路]第三部分,主要介绍Kubernetes Terway ENIIP模式下,数据面链路的转转发链路。