介绍SLS在可观测数据融合分析的一系列技术升级,融合Trace、全栈监控、Continuous Profiling、移动端监控等功能,帮助大家更快速地构筑全栈、自动化的观测能力。
基于单个开源小模型的工具调用Agent,由于模型容量和预训练能力获取的限制,无法在推理和规划、工具调用、回复生成等任务上同时获得比肩大模型等性能。
锁是解决这些问题的传统方法,而无锁化编程是一种更高级但复杂的技术,它能够在某些情况下提供更优的性能和可扩展性。正确选择和实现适合应用场景的并发策略,是高效多线程编程的关键。本文由作者带着大家一起学习无锁化编程。
vLLM是UC Berkeley开源的大语言模型高速推理框架,其内存管理核心——PagedAttention、内置的加速算法如Continues Batching等,一方面可以提升Yuan2.0模型推理部署时的内存使用效率,另一方面可以大幅提升在实时应用场景下Yuan2.0的吞吐量。
企业 FinOps 实施不是一蹴而就的项目,如果您正在推进企业云原生 FinOps 落地,除了选择合适的技术手段,企业内部的流程和体系建设也尤为重要。
在本文中,我们将深入探讨为何选择 iLogtail,以及它在 SPL 数据处理方面相较于 Logstash 有何独特优势。通过对比这两款工具的架构、性能以及功能,我们希望能够揭示 iLogtail 如何在日益复杂的日志处理需求中脱颖而出,帮助您做出明智的技术选择。