PolarDB-X 2.0(以下简称PolarDB-X)与DRDS(DRDS也称为PolarDB-X 1.0)都是阿里云上的分布式数据库产品。看起来她们都是Share-Nothing的架构,用水平扩展来解决单机数据库瓶颈问题。很多同学因此会有疑惑,她们俩到底有什么样的区别?
直播平台的数据库选型要考虑流量波动、数据规模和实时性需求,如使用Redis的Sorted Set处理实时排行榜,List处理用户关注列表,使用分布式数据库PolarDB-X处理核心业务数据,AnalyticDB进行大数据分析。通过这些技术和策略,直播平台能够应对复杂的业务需求和流量挑战。
当前PolarDB-X正在全面对接阿里云 ''数据库自治服务 DAS",PolarDB-X限流能力将会以白屏化的方式提供给用户,经一步提升用户体验,降低使用门槛。
提起CDN,大家想到的字眼可能是缓存、转发、调度,用来提升终端用户体验、保护源站IP、降低源站流量风险,同时可以将源站的应用功能卸载到边缘,进一步释放边缘算力满足业务需求。DCDN脱胎于CDN,面向动态元素,通过智能路由、协议优化、压缩传输等手段,将转发场景的性能提到极限,广泛应用于电商、游戏、政企等行业。在互联网蓬勃发展,传统企业寻求数字化转型机会的今天,DCDN作为流量的入口,搭配灵活易扩展的“高级条件”及“EdgeScript”,可以通过流量转发这一技术手段,实现客户上云的“安全灰度”。
Paxos 作为一个经典的分布式一致性算法(Consensus Algorithm),在各种教材中也被当做范例来讲解。但由于其抽象性,很少有人基于朴素 Paxos 开发一致性库,本文介绍的实现代码参考了 RAFT 中的概念以及 phxpaxos 的实现和架构设计,实现 multi-paxos 算法,主要针对线程安全和模块抽象进行强化,网络、成员管理、日志、快照、存储以接口形式接入,算法设计为事件驱动,仅包含头文件,便于移植和扩展。
承接上一篇,这次跟大家分享一些与SQL优化相关的经验,希望能够帮助大家了解如果更有效率的使用ADBPG数据库。ADBPG数据库使用基于成本(cost-based)的优化器,像其他的数据库一样,在生成计划时会考虑联接表行数、索引、相关字段基数等因素,除此之外,优化器还会考虑数据所在的segment节点...
人工智能平台 PAI 推出了高性能一体化强化学习框架 PAI-Chatlearn,从框架层面解决强化学习在计算性能和易用性方面的挑战。
云数据仓库AnalyticDB PostgreSQL 版发布了最新自研的云原生架构实例,实现了跨实例间的数据共享能力。允许进行跨实例间的实时数据共享且无需进行数据迁移,可支持构建安全、高效、灵活的数据分析场景。本文介绍了依托数据共享实现云数仓跨多业务实例的敏捷数据分析方案。