大型语言模型(Large language models,LLM)是基于大量数据进行预训练的超大型深度学习模型,本文主要讲述TensorRT-LLM利用量化、In-Flight Batching、Attention、Graph Rewriting提升 LLM 模型推理效率。
本文介绍了 Kubernetes 中的容器工作内存(WorkingSet)概念,它用于表示容器内存的实时使用量,尤其是活跃内存。
借助 AI-native 可观测解决方案,阿里云为用户提供开箱即用的覆盖大模型应用、大模型到基础设施的全链路实时观测、告警与诊断能力,帮助企业在复杂的数字化转型过程中更有效地确保资源的高效利用与业务的持续成功。
DeepSeek加速了模型平权,大模型推理需求激增,性能提升主战场从训练转向推理。SSE(Server-Sent Events)和WebSocket成为大模型应用的标配网络通信协议。SSE适合服务器单向推送实时数据,如一问一答场景;WebSocket支持双向实时通信,适用于在线游戏、多人协作等高实时性场景。两者相比传统HTTPS协议,能更好地支持流式输出、长时任务处理和多轮交互,满足大模型应用的需求。随着用户体量扩大,网关层面临软件变更、带宽成本及恶意攻击等挑战,需通过无损上下线、客户端重连机制、压缩算法及安全防护措施应对。
本文介绍了将社区主流STDIO MCP Server一键转为企业内可插拔Remote MCP Server的方法,以及存量API智能化重生的解决方案。通过FunctionAI平台模板实现STDIO MCP Server到SSE MCP Server的快速部署,并可通过“npx”或“uvx”命令调试。同时,文章还探讨了如何将OpenAPI规范数据转化为MCP Server实例,支持API Key、HTTP Basic和OAuth 2.0三种鉴权配置。该方案联合阿里云百练、魔搭社区等平台,提供低成本、高效率的企业级MCP Server服务化路径,助力AI应用生态繁荣。
本文记录了一次从灵光一现到快速落地的 AI + 地图服务实践,通过结合 Cursor 与高德 MCP 地图服务平台,作者仅用几个小时就实现了一个可交互、可筛选、可推荐的杭州美食地图应用。
vLLM是UC Berkeley开源的大语言模型高速推理框架,其内存管理核心——PagedAttention、内置的加速算法如Continues Batching等,一方面可以提升Yuan2.0模型推理部署时的内存使用效率,另一方面可以大幅提升在实时应用场景下Yuan2.0的吞吐量。