本文作者基于自身在RAG技术领域长达半年的实践经验,分享了从初识RAG的潜力到面对实际应用挑战的心路历程,以及如何通过一系列优化措施逐步解决这些挑战的过程。
 
              本文将从两个常见的大模型翻车问题入手解析这些问题背后体现的大模型技术原理,并解释了为什么会导致这些问题,接着我们利用CoT(思维链)方法解决这些问题并基于上述原理试图剖析CoT方法起作用的可能原因,最后提出【理由先行】风格这一简单有效的Prompt Trick。
Anolis OS 作为国内首个正式提供 OpenVINO 开发包和镜像的服务器端操作系统,推动国内 AI 推理生态和能力的升级。
在过去半年,ALB Ingress Controller推出了多项高级特性,包括支持AScript自定义脚本、慢启动、连接优雅中断等功能,增强了产品的灵活性和用户体验。此外,还推出了ingress2Albconfig工具,方便用户从Nginx Ingress迁移到ALB Ingress,以及通过Webhook服务实现更智能的配置校验,减少错误配置带来的影响。在容灾部署方面,支持了多集群网关,提高了系统的高可用性和容灾能力。这些改进旨在为用户提供更强大、更安全的云原生网关解决方案。
本文介绍了阿里云容器服务(ACK)支持的StrmVol存储卷方案,旨在解决Kubernetes环境中海量小文件访问性能瓶颈问题。通过虚拟块设备与内核态文件系统(如EROFS)结合,StrmVol显著降低了小文件访问延迟,适用于AI训练集加载、时序日志分析等场景。其核心优化包括内存预取加速、减少I/O等待、内核态直接读取避免用户态切换开销,以及轻量索引快速初始化。示例中展示了基于Argo Workflows的工作流任务,模拟分布式图像数据集加载,测试结果显示平均处理时间为21秒。StrmVol适合只读场景且OSS端数据无需频繁更新的情况,详细使用方法可参考官方文档。
本文详细介绍了阿里云应用服务器如何助力传统J2EE应用实现智能化升级。文章分为三部分:第一部分阐述了传统J2EE应用在智能化转型中的痛点,如协议鸿沟、资源冲突和观测失明;第二部分展示了阿里云应用服务器的解决方案,包括兼容传统EJB容器与微服务架构、支持大模型即插即用及全景可观测性;第三部分则通过具体步骤说明如何基于EDAS开启J2EE应用的智能化进程,确保十年代码无需重写,轻松实现智能化跃迁。
在 AI 与云原生融合的趋势下,开发者面临模型协同与云端扩展的挑战。MCP(模型上下文协议)提供统一的交互规范,简化模型集成与服务开发。Function AI 支持 MCP 代码一键上云,提供绑定代码仓库、OSS 上传、本地交付物部署及镜像部署等多种构建方式,助力开发者高效部署智能服务,实现快速迭代与云端协同。
本文主要介绍了云原生安全的现状以及企业应用在云原生化转型中面临的主要安全挑战以及相对成熟的一部分安全体系方法论,深度解析企业云原生 DevSecOps 体系构建。
本文深入探讨了云时代 EDA 的新内涵及它在云时代再次流行的主要驱动力,包括技术驱动力和商业驱动力,随后重点介绍了 RocketMQ 5.0 推出的子产品 EventBridge,并通过几个云时代事件驱动的典型案例,进一步叙述了云时代事件驱动的常见场景和最佳实践。
