海尔与阿里云的合作不仅推动了自身的技术革新和服务升级,更为整个智能家居行业树立了典范。在未来的发展道路上,双方将继续携手共进,共同迎接 AI 时代的到来,为全球用户创造更加美好的智慧生活。
阿里云数据可视化产品DataV团队一直在三维交互领域进行前沿探索,为了解决LLMs与3D结合的问题,近期在虚幻引擎内结合通义千问大模型家族打造了一套基于LLM的实时可交互3D世界方案,通过自然语言来与引擎内的3D世界进行交互。
通义灵码2.0引入了DeepSeek V3与R1模型,新增Qwen2.5-Max和QWQ模型,支持个性化服务切换。阿里云发布开源推理模型QwQ-32B,在数学、代码及通用能力上表现卓越,性能媲美DeepSeek-R1,且部署成本低。AI程序员功能涵盖表结构设计、前后端代码生成、单元测试与错误排查,大幅提升开发效率。跨语言编程示例中,成功集成DeepSeek-R1生成公告内容。相比1.0版本,2.0支持多款模型,丰富上下文类型,具备多文件修改能力。总结显示,AI程序员生成代码准确度高,但需参考现有工程风格以确保一致性,错误排查功能强大,适合明确问题描述场景。相关链接提供下载与原文参考。
本文探讨了MCP(Model-Calling Protocol)的兴起及其对AI生态的影响。自2月中旬起,MCP热度显著提升,GitHub Star和搜索指数均呈现加速增长趋势。MCP通过标准化协议连接大模型与外部工具,解决了碎片化集成问题,推动AI应用货币化及生态繁荣。文章分析了MCP与Function Calling的区别,指出MCP更适用于跨平台、标准化场景,而Function Calling在特定实时任务中仍具优势。此外,MCP促进了 supply端(如云厂商、大模型、中间件服务商)和消费端(终端用户)的变革,尤其以Devin和Manus为代表,分别改变了程序员和普通用户的交互方式。
通义灵码新上的外挂 Project Rules 获得了开发者的一致好评:最小成本适配我的开发风格、相当把团队经验沉淀下来,是个很好功能……
本文介绍了使用阿里云实时数仓 Hologres、函数计算 FC 和通义大模型 Qwen3 构建企业级数据分析 Agent 的方法。通过 MCP(模型上下文协议)标准化接口,解决大模型与外部工具和数据源集成的难题。Hologres 提供高性能数据分析能力,支持实时数据接入和湖仓一体分析;函数计算 FC 提供弹性、安全的 Serverless 运行环境;Qwen3 具备强大的多语言处理和推理能力。方案结合 ModelScope 的 MCP Playground,实现高效的服务化部署,帮助企业快速构建跨数据源、多步骤分解的数据分析 Agent,优化数据分析流程并降低成本。
多模态理解模型具有广泛的应用,比如多标签分类、视频问答(videoQA)和文本视频检索等。现有的方法已经在视频和语言理解方面取得了重大进展,然而,他们仍然面临两个巨大的挑战:无法充分的利用现有的特征;训练时巨大的GPU内存消耗。我们提出了MuLTI,这是一种高度准确高效的视频和语言理解模型,可以实现高效有效的特征融合和对下游任务的快速适应。本文详细介绍基于MuLTI实现高效视频与语言理解。
RocketMQ ACL 2.0 不管是在模型设计、可扩展性方面,还是安全性和性能方面都进行了全新的升级。旨在能够为用户提供精细化的访问控制,同时,简化权限的配置流程。欢迎大家尝试体验新版本,并应用在生产环境中。
你真的用对了 useRef 吗?在与 TypeScript 一起使用、以及撰写组件库的情况下,你的写法能够避开以下所有场景的坑吗?