官方博客-第7页-阿里云开发者社区

  • Post-Training on PAI (4):模型微调SFT、DPO、GRPO

    阿里云人工智能平台 PAI 提供了完整的模型微调产品能力,支持 监督微调(SFT)、偏好对齐(DPO)、强化学习微调(GRPO) 等业界常用模型微调训练方式。根据客户需求及代码能力层级,分别提供了 PAI-Model Gallery 一键微调、PAI-DSW Notebook 编程微调、PAI-DLC 容器化任务微调的全套产品功能。

  • 2025-04-25
    1647

    MCP Server 实践之旅第 1 站:MCP 协议解析与云上适配

    本文深入解析了Model Context Protocol(MCP)协议,探讨其在AI领域的应用与技术挑战。MCP作为AI协作的“USB-C接口”,通过标准化数据交互解决大模型潜力释放的关键瓶颈。文章详细分析了MCP的生命周期、传输方式(STDIO与SSE),并提出针对SSE协议不足的优化方案——MCP Proxy,实现从STDIO到SSE的无缝转换。同时,函数计算平台被推荐为MCP Server的理想运行时,因其具备自动弹性扩缩容、高安全性和按需计费等优势。最后,展望了MCP技术演进方向及对AI基础设施普及的推动作用,强调函数计算助力MCP大规模落地,加速行业创新。

  • 2025-07-18
    862

    淘天AB实验分析平台Fluss落地实践:更适合实时OLAP的消息队列

    淘天集团数据开发团队基于Fluss构建新一代实时数仓,解决数据消费冗余、探查困难及大State运维难题。Fluss融合列存与实时更新能力,支持列裁剪、KV点查、Delta Join及湖流一体,显著降低IO与计算资源消耗,提升作业稳定性与数据探查效率。已在淘天AB实验平台落地,覆盖搜索、推荐等核心业务,通过618大促验证,实现千万级流量、秒级延迟,资源消耗降低30%,State缩减超100TB。未来将持续深化湖仓架构,拓展AI场景应用。

  • 2024-05-15
    78368

    通义千问API:让大模型使用各种工具

    本章我们将通过一个简单的例子,揭示基于LangChain的Agent开发的秘密,从而了解如何扩展大模型的能力。

    78,368
  • 2024-05-15
    68027

    通义千问API:让大模型写代码和跑代码

    基于前面三章的铺垫,本章我们将展示大模型Agent的强大能力。我们不仅要实现让大模型同时使用多种查询工具,还要实现让大模型能查询天气情况,最后让大模型自己写代码来查询天气情况。

    68,027
  • 2024-06-13
    1977

    使用KMS为Apollo配置中心敏感配置加密的最佳实践

    使用KMS为Apollo配置中心敏感配置加密的最佳实践

    1,977
  • 2024-09-03
    3312

    【算法精讲系列】通义模型Prompt调优的实用技巧与经验分享

    本文详细阐述了Prompt的设计要素,包括引导语、上下文信息等,还介绍了多种Prompt编写策略,如复杂规则拆分、关键信息冗余、使用分隔符等,旨在提高模型输出的质量和准确性。通过不断尝试、调整和优化,可逐步实现更优的Prompt设计。

  • 2024-12-27
    1508

    极简开发,极速上线:构建端到端大模型应用

    本文将以一个经典的 RAG(检索增强生成)知识问答系统为例,详细介绍从智能体设计到最终应用部署的全流程。

    1,508
  • 2024-09-04
    2261

    【算法精讲系列】MGTE系列模型,RAG实施中的重要模型

    检索增强生成(RAG)结合检索与生成技术,利用外部知识库提升大模型的回答准确性与丰富性。RAG的关键组件包括文本表示模型和排序模型,前者计算文本向量表示,后者进行精细排序。阿里巴巴通义实验室推出的GTE-Multilingual系列模型,具备高性能、长文档支持、多语言处理及弹性向量表示等特性,显著提升了RAG系统的检索与排序效果。该系列模型已在多个数据集上展示出优越性能,并支持多语言和长文本处理,适用于各种复杂应用场景。

    2,261
  • 1
    ...
    6
    7
    8
    ...
    102
    到第