本文介绍了 Kubernetes 中的容器工作内存(WorkingSet)概念,它用于表示容器内存的实时使用量,尤其是活跃内存。
文章介绍了GPT-Sovits,一个开源的生成式语音模型,因其在声音克隆上的高质量和简易性而受到关注。阿里云函数计算(Function Compute)提供了一个快速托管GPT-Sovits的方法,让用户无需管理服务器即可体验和部署该模型。通过函数计算,用户可以便捷地搭建基于GPT-Sovits的文本到语音服务,并享受到按需付费和弹性扩展的云服务优势。此外,文章还列举了GPT-Sovits在教育、游戏、新能源等多个领域的应用场景,并提供了详细的步骤指导,帮助用户在阿里云上部署和体验GPT-Sovits模型。
采用传统硬盘搭建存储方案,看起来成本低廉,但是再加上各种附加因素后却大幅攀升,而云存储厂商通常提供基于订阅的定价模型、一些免费服务和一定的折扣。现在,我们就来了解一下如何更省钱地使用云存储。
从海量的日志数据中,按照各种灵活的条件进行即时查询搜索,是可观测场景下的基本需求。本文介绍了 SLS 新推出的高性能 SPL 日志查询模式,支持 Unix 风格级联管道式语法,以及各种丰富的 SQL 处理函数。同时通过计算下推、向量化计算等优化,使得 SPL 查询可以在数秒内处理亿级数据,并支持 SPL 过滤结果分布图、随机翻页等特性。
商品标题中关键词的好坏是商品能否被主搜检索到的关键因素,使用大模型自动优化标题成为【AI经营】中的核心能力之一,本文讲述大模型如何帮助商家优化商品素材,提升商品竞争力。
本文探讨了MCP(Model-Calling Protocol)的兴起及其对AI生态的影响。自2月中旬起,MCP热度显著提升,GitHub Star和搜索指数均呈现加速增长趋势。MCP通过标准化协议连接大模型与外部工具,解决了碎片化集成问题,推动AI应用货币化及生态繁荣。文章分析了MCP与Function Calling的区别,指出MCP更适用于跨平台、标准化场景,而Function Calling在特定实时任务中仍具优势。此外,MCP促进了 supply端(如云厂商、大模型、中间件服务商)和消费端(终端用户)的变革,尤其以Devin和Manus为代表,分别改变了程序员和普通用户的交互方式。
本文介绍了阿里云Prometheus 2.0方案,针对大规模AI系统的可观测性挑战进行全面升级。内容涵盖数据采集、存储、计算、查询及生态整合等维度。 Prometheus 2.0引入自研LoongCollector实现多模态数据采集,采用全新时序存储引擎提升性能,并支持RecordingRule与ScheduleSQL预聚合计算。查询阶段提供跨区域、跨账号的统一查询能力,结合PromQL与SPL语言增强分析功能。此外,该方案已成功应用于阿里云内部AI系统,如百炼、通义千问等大模型全链路监控。未来,阿里云将发布云监控2.0产品,进一步完善智能观测技术栈。
阿里云云效是国内领先的一站式DevOps平台,提供代码全生命周期管理、智能化交付流水线及精细化研发管控,支持多种开发场景。本文详细介绍了从其他平台(如Coding)向云效迁移的完整方案,包括代码仓库、流水线、制品仓库及项目数据的迁移步骤,帮助用户实现高效、安全的平滑迁移,提升研发效率与协作能力。