Dataphin 是阿里巴巴旗下的一个智能数据建设与治理平台,旨在帮助企业构建高效、可靠、安全的数据资产。在V4.2版本中,Dataphin敏捷版上线助力企业打造轻量版数据中台,打通数据资产管理和消费,陪伴企业迈入数据高价值应用新阶段。
本文分享了如何利用阿里云的存储解决方案构建一个具备高效处理、高时效性的AI数据湖,通过高吞吐训练和高效推理帮助企业快速实现数据价值,以及用户在使用中的最佳实践。
本次方案将帮助大家实现使用阿里云产品函数计算FC,只需简单操作,就可以快速配置ComfyUI大模型,创建出你的专属毛茸茸萌宠形象。内置基础大模型+常用插件+部分 Lora,以风格化图像生成只需用户让体验键配置简单方便,后续您可以根据自己的需要更换需要的模型、Lora、增加插件。
本文从模型架构、并行策略、通信优化和显存优化四个方面展开,深入分析了DeepSeek-V3高效训练的关键技术,探讨其如何以仅5%的算力实现对标GPT-4o的性能。
通义灵码Project Rules是一种针对AI代码生成的个性化规则设定工具,旨在解决AI生成代码不精准或不符合开发者需求的问题。通过定义编码规则(如遵循SOLID原则、OWASP安全规范等),用户可引导模型生成更符合项目风格和偏好的代码。例如,在使用阿里云百炼服务平台的curl调用时,通义灵码可根据预设规则生成Java代码,显著提升代码采纳率至95%以上。此外,还支持技术栈、应用逻辑设计、核心代码规范等多方面规则定制,优化生成代码的质量与安全性。
介绍SLS在可观测数据融合分析的一系列技术升级,融合Trace、全栈监控、Continuous Profiling、移动端监控等功能,帮助大家更快速地构筑全栈、自动化的观测能力。