唯一不变的是变化,在现代复杂的商业环境中,企业的业务形态与规模往往处于不断变化和扩大之中。这种动态发展对企业的信息系统提出了更高的要求,特别是在软件架构方面。为了应对不断变化的市场需求和业务扩展,软件架构必须进行相应的演进和优化。网关作为互联网流量的入口,其形态也在跟随软件架构持续演进迭代中。我们下面就聊一聊网关的演进历程以及在时下火热的 AI 浪潮下,网关又会迸发怎样新的形态。
这篇文章旨在提供技术深度和实践指南,帮助开发者理解并应用这项创新技术来提高Golang应用的监控与服务治理能力。在接下来的部分,我们将通过一些实际案例,进一步展示如何在不同场景中应用这项技术,提供更多实践启示。
随着企业对云服务的广泛应用,数据安全成为重要课题。通过对云上数据进行敏感数据扫描和保护,可以有效提升企业或组织的数据安全。本文主要基于阿里云的数据安全中心数据识别功能进行深入实践探索。通过对商品购买日志的模拟,分析了如何使用阿里云的工具对日志数据进行识别、脱敏(3 种模式)处理和基于 StoreView 的查询脱敏方式,从而在保障数据安全的同时满足业务需求。通过这些实践,企业可以有效降低数据泄漏风险,提升数据治理能力和系统安全性。
本文作者将介绍女娲对社区 ZooKeeper 在分布式读写锁实践细节上的思考,希望帮助大家理解分布式读写锁背后的原理。
本文主要介绍AI浪潮下的数据安全管理实践,主要分为背景介绍、Access Point、Bucket三个部分
Higress 作为一款开源的 AI 网关工具,可以提供基于灰度+观测的平滑迁移方案。
FlinkSQL的行级权限解决方案及源码,支持面向用户级别的行级数据访问控制,即特定用户只能访问授权过的行,隐藏未授权的行数据。此方案是实时领域Flink的解决方案,类似离线数仓Hive中Ranger Row-level Filter方案。
当系统出现大量或者重大的错误却不被人感知,将会对业务产生影响,从而导致资产损失。当竞争对手实施了新战术,却无法及时感知,跟不上竞争对手的节奏,总是追着对方尾巴走。当要做决策的时候,海量的业务数据增长却无法实时看到聚合结果,决策总是凭借过往经验或者过时的数据分析之上。