官方博客-第24页-阿里云开发者社区

  • 2024-05-15
    494

    跟着iLogtail学习无锁化编程

    锁是解决这些问题的传统方法,而无锁化编程是一种更高级但复杂的技术,它能够在某些情况下提供更优的性能和可扩展性。正确选择和实现适合应用场景的并发策略,是高效多线程编程的关键。本文由作者带着大家一起学习无锁化编程。

    494
  • 2024-05-24
    50193

    AIOps 智能运维:比专家经验更优雅的错/慢调用分析工具

    本文主要介绍ARMS 错/慢 Trace 分析功能基本原理; 该功能能够覆盖哪些异常 Trace 根因; 最后会介绍一些最佳实践案例。

  • 715

    内附原文|SIGMOD’24:百万核的智能调度,云数仓如何结合AI处理用户混合负载

    论文提出的Flux通过使用AI技术将短时和长时查询解耦进行自动弹性,解决了云数据仓库的性能瓶颈,同时支持了资源按需预留。Flux优于传统的方法,查询响应时间 (RT) 最多可减少75%,资源利用率提高19.0%,成本开销降低77.8%。

  • 346

    Redis Proxy RT上升后连接倾斜

    本文细致地描述了关于Redis Proxy RT上升后连接倾斜问题的排查过程和根本原因,最后给出了优化方案。

  • 2024-08-06
    1381

    AnalyticDB for MySQL:AI时代实时数据分析的最佳选择

    阿里云云原生数据仓库AnalyticDB MySQL(ADB-M)与被OpenAI收购的实时分析数据库Rockset对比,两者在架构设计上有诸多相似点,例如存算分离、实时写入等,但ADB-M在多个方面展现出了更为成熟和先进的特性。ADB-M支持更丰富的弹性能力、强一致实时数据读写、全面的索引类型、高吞吐写入、完备的DML和Online DDL操作、智能的数据生命周期管理。在向量检索与分析上,ADB-M提供更高检索精度。ADB-M设计原理包括分布式表、基于Raft协议的同步层、支持DML和DDL的引擎层、高性能低成本的持久化层,这些共同确保了ADB-M在AI时代作为实时数据仓库的高性能与高性价比

    1,381
  • 2024-08-16
    7814

    PolarDB-X 存储引擎核心技术 | Lizard B+tree 优化

    PolarDB-X 分布式数据库,采用集中式和分布式一体化的架构,为了能够灵活应对混合负载业务,作为数据存储的 Data Node 节点采用了多种数据结构,其中使用行存的结构来提供在线事务处理能力,作为 100% 兼容 MySQL 生态的数据库,DN 在 InnoDB 的存储结构基础上,进行了深度优化,大幅提高了数据访问的效率。

    7,814
  • 2024-08-16
    744

    用 Higress AI 网关降低 AI 调用成本 - 阿里云天池云原生编程挑战赛参赛攻略

    《Higress AI 网关挑战赛》正在火热进行中,Higress 社区邀请了目前位于排行榜 top5 的选手杨贝宁同学分享他的心得。本文是他整理的参赛攻略。

  • 2024-09-03
    337

    MySQL 8.0:filesort 性能退化的问题分析

    用户将 RDS MySQL 实例从 5.6 升级到 8.0 后,发现相同 SQL 的执行时间增长了十几倍。本文就该问题逐步展开排查,并最终定位根因。

    337
  • 2024-09-24
    576

    通过实验深入了解 TCP 数据的发送和接收

    本系列文章是组内写给新人和实习生的 TCP入门系列教程,结合了理论和实践,本篇为第二篇,建议先读上篇《通过实验深入了解TCP 连接的建立和关闭》。

    576
  • 1
    ...
    23
    24
    25
    ...
    56
    到第