本文介绍了对象存储(OSS)在AI业务中的应用与实践。内容涵盖四个方面:1) 对象存储作为AI数据基石,因其低成本和高弹性成为云上数据存储首选;2) AI场景下的对象存储实践方案,包括数据获取、预处理、训练及推理阶段的具体使用方法;3) 国内主要区域的默认吞吐量提升至100Gbps,优化了大数据量下的带宽需求;4) 常用工具介绍,如OSSutil、ossfs、Python SDK等,帮助用户高效管理数据。重点讲解了OSS在AI训练和推理中的性能优化措施,以及不同工具的特点和应用场景。
本方案利用函数计算的无服务器架构,您可以在函数计算控制台选择魔搭(ModelScope)开源大模型应用模板;同时,我们将利用文件存储 NAS ,为应用服务所需的大模型和相关文件提供一个安全的存储环境;最终通过访问提供的域名进行模型的调用与验证。仅需三步,即可玩转目前热门 AI 大模型。
Kubernetes 体系基于 DNS 的服务发现为开发者提供了很大的便利,但其高度复杂的架构往往带来更高的稳定性风险。以 Nacos 为代表的独立服务发现系统架构简单,在 Kubernetes 中选择独立服务发现系统可以帮助增强业务可靠性、可伸缩性、性能及可维护性,对于规模大、增长快、稳定性要求高的业务来说是一个较理想的服务发现方案。希望大家都能找到适合自己业务的服务发现系统。
在大部分基于 Envoy 实现的网关里,都存在这样一个问题,当开启 http2 时,客户端访问会出现偶发的 404,并且可以从日志注意到这些 404 的请求,:authority 头里的域名和 SNI 里的域名不一致。且在使用泛域名证书,且配置了多个域名的路由的情况下,这个问题特别容易出现。
Serverless Devs 官网迎来全新升级,主站以 AI 应用开发的叙事透出项目特性和解决方案。应用中心(Registry)将各类热门 AI 应用模版、实用 AI 工具以及 AI 工作流等呈现给用户。本次升级主题为“一站式 AI/函数/应用开发”,希望为开发者提供更加便利的应用模版搜索和展示服务,本文将对本次升级的三大看点进行整理,欢迎您来体验!
本文讲述作者如何解决客户集群中出现的OOM(Out of Memory)和Pod驱逐问题。文章不仅详细记录了问题的发生背景、现象特征,还深入探讨了排查过程中的关键步骤和技术细节。
本篇文章我们将详细介绍怎么轻松在 Anolis OS 上使用 Kata Containers 安全容器