官方博客-第4页-阿里云开发者社区

  • 2024-09-25
    807

    新场景、新能力,AI-native 时代的可观测革新

    借助 AI-native 可观测解决方案,阿里云为用户提供开箱即用的覆盖大模型应用、大模型到基础设施的全链路实时观测、告警与诊断能力,帮助企业在复杂的数字化转型过程中更有效地确保资源的高效利用与业务的持续成功。

  • 2024-10-15
    1304

    AI时代数据湖实践

    本文分享了如何利用阿里云的存储解决方案构建一个具备高效处理、高时效性的AI数据湖,通过高吞吐训练和高效推理帮助企业快速实现数据价值,以及用户在使用中的最佳实践。

  • 2025-04-17
    787

    智能体Agent:用自然语言重构数据开发

    本文分享如何基于利用MCP协议,配置MCP Server,以调用大数据开发与治理平台DataWorks Open API搭建智能体Agent,实现通过自然语言完成数据集成与数据开发等任务。文章还介绍了MCP协议的基本知识,帮助大家了解背后实现原理。大家可以通过自行配置体验数据工作流智能自动化运行。

  • 2024-05-16
    57088

    容器内存可观测性新视角:WorkingSet 与 PageCache 监控

    本文介绍了 Kubernetes 中的容器工作内存(WorkingSet)概念,它用于表示容器内存的实时使用量,尤其是活跃内存。

  • 2024-07-23
    15660

    一文梳理我们是如何打造出国内领先的 AI 编程助手「通义灵码」

    大语言模型的革命性突破使智能编程成为了可能,通义灵码正是基于通义大模型打造的 AI 编程助手,通过 IDE 插件的形式提供代码补全、单元测试生成等功能,能达到毫秒级的响应速度。目前,通义灵码已在阿里云内部及多家企业中应用,阿里云也在探索多智能体产品,即 AI 程序员,助力数字世界的蓬勃发展,颠覆 IT 生产力。

  • 2023-05-15
    7491

    消息队列之 MetaQ 和 Kafka 区别和优势详解

    本篇文章介绍MetaQ和Kafka这两个消息队列的区别和优势。

    7,491
  • 2024-05-15
    102472

    大语言模型推理提速,TensorRT-LLM 高性能推理实践

    大型语言模型(Large language models,LLM)是基于大量数据进行预训练的超大型深度学习模型,本文主要讲述TensorRT-LLM利用量化、In-Flight Batching、Attention、Graph Rewriting提升 LLM 模型推理效率。

    102,472
  • 2024-05-15
    63367

    All in One:Prometheus 多实例数据统一管理最佳实践

    当管理多个Prometheus实例时,阿里云Prometheus托管版相比社区版提供了更可靠的数据采集和便捷的管理。本文比较了全局聚合实例与数据投递方案,两者在不同场景下各有优劣。

  • 2024-07-29
    20120

    LLM 应用可观测性:从 Trace 视角展开的探索与实践之旅

    基于大语言模型的应用在性能、成本、效果等方面存在一系列实际痛点,本文通过分析 LLM 应用模式以及关注点差异来阐明可观测技术挑战,近期阿里云可观测推出了面向 LLM 应用的可观测解决方案以及最佳实践,一起来了解下吧。

    20,120
  • 1
    ...
    3
    4
    5
    ...
    48
    到第